Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T02:07:11.716Z Has data issue: false hasContentIssue false

A novel phosphagen phosphotransferase in the plerocercoids of Schistocephalus solidus (Cestoda: Pseudophyllidea)

Published online by Cambridge University Press:  06 April 2009

J. Barrett
Affiliation:
Department of Zoology, University College of Wales, Aberystwyth
G. M. Lloyd
Affiliation:
Department of Zoology, University College of Wales, Aberystwyth

Summary

Neither phosphagens nor phosphagen phosphotransferase activity could be detected in Fasciola hepatica, Hymenolepis diminuta, Moniezia expansa or in the plerocercoids of Ligula intestinalis. The plerocercoids of Schistocephalus solidus, however, possess an active taurocyamine phosphotransferase, although it too contains no detectable phosphagens. The taurocyamine phosphotransferase of S. solidus has an absolute requirement for a divalent metal ion and ATP could not be replaced by ITP, GTP, CTP, or UTP as the phosphate donor. The role of phosphagens in helminths is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam, H. (1963). Adenosine-5-triphosphate. Determination with phosphoglycerate kinase. In Methods of Enzymatic Analysis (ed. Bergmeyer, H. U.), pp. 539543. New York: Academic Press.Google Scholar
Barrett, J. (1973). Nucleoside triphosphate metabolism in the muscle tissue of Ascaris lumbricoides (Nematoda). International Journal for Parasitology 3, 393400.CrossRefGoogle ScholarPubMed
Cornish-Bowden, A. & Eisenthal, R. (1974). Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot and other methods. The Biochemical Journal 139, 721–30.CrossRefGoogle Scholar
Ennor, A. H. & Morrison, J. F. (1958). Biochemistry of phosphagens and related guanidines. Physiological Reviews 38, 631–74.CrossRefGoogle ScholarPubMed
Fisherová, H. & Kubištová, J. (1968). Absence of phosphagens in the musculature of some worms. Physiologia Bohemoslovaca 17, 375–82.Google Scholar
Fiske, C. H. & SubbaRow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry 66, 375400.CrossRefGoogle Scholar
Gornall, A. G., Bardawill, C. J. & David, M. M. (1949). Determination of serum proteins by means of Biuret reaction. Journal of Biological Chemistry 177, 751–66.CrossRefGoogle ScholarPubMed
Govindwar, S. L., Gawande, T. S. & Harinath, B. C. (1974). Enzymes in Wuchereria bancrofti. Indian Journal of Biochemistry and Biophysics 11, 338–9.Google Scholar
Jones, C. A., Swartzwelder, J. C. & Abadie, S. H. (1955). On the occurrence of certain high energy phosphate compounds in filariform larvae of Strongyloides ratti. Journal of Parasitology 41, 48.Google Scholar
Jones, C. A., Swartzwelder, J. C. & Abadie, S. H. (1957). On the comparative distribution of phosphate esters in Trichuris vulpis, Ascaris lumbricoides and Strongyloides ratti. American Journal of Tropical Medicine and Hygiene 6, 385–6.Google Scholar
Leech, A. R., Beis, I. & Newsholme, E. A. (1978). Radiochemical assay for creatine kinase and arginine kinase using rapid ion exchange separations. Analytical Biochemistry 90, 561–75.CrossRefGoogle ScholarPubMed
Rockstein, M. & Herron, P. W. (1951). Colorimetric determination of inorganic phosphate in microgram quantities. Analytical Chemistry 23, 1500–1.CrossRefGoogle Scholar
Rogers, W. P. & Lazarus, M. (1949). Glycolysis and related phosphorus metabolism in parasitic nematodes. Parasitology 39, 302–14.CrossRefGoogle ScholarPubMed
Warren, L. G. & Guevara, A. (1962). Nematode metabolism with special reference to Ancylostoma caninum. Revista de Biologia Tropical 10, 149–59.Google Scholar
Watts, D. C. & Moreland, B. (1970). An investigation of the distribution and properties of some phosphagen phosphotransferases. In Experiments in Physiology and Biochemistry, vol 3 (ed. Kerkut, G.), pp. 1108. New York: Academic Press.Google Scholar
Wiel-Malherbe, H. & Green, R. H. (1951). The catalytic effect of molybdate on the hydrolysis of organic phosphate bonds. The Biochemical Journal 49, 286–92.CrossRefGoogle Scholar
Wollenberger, A., Ristau, O. & Schoffa, G. (1960). Eine einfache Technik der extrem schnellen Abkühlung grösserer Gewebestücke. Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere 270, 399412.CrossRefGoogle Scholar