Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:10:10.268Z Has data issue: false hasContentIssue false

Novel cysteine proteinase in Trypanosoma cruzi metacyclogenesis

Published online by Cambridge University Press:  21 October 2005

V. G. DUSCHAK
Affiliation:
Instituto Nacional de Parasitología ‘Dr Mario Fatala Chabén’, ANLIS-Malbrán, Ministerio de Salud y Ambiente, Av. Paseo Colon 568, 1063 Buenos Aires, Argentina
M. BARBOZA
Affiliation:
Instituto de Investigaciones Biotecnológicas–INTECH, Universidad Nacional de General San Martín, 1650 Buenos Aires, Argentina
G. A. GARCÍA
Affiliation:
Instituto Nacional de Parasitología ‘Dr Mario Fatala Chabén’, ANLIS-Malbrán, Ministerio de Salud y Ambiente, Av. Paseo Colon 568, 1063 Buenos Aires, Argentina
E. M. LAMMEL
Affiliation:
Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, Argentina
A. S. COUTO
Affiliation:
CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
E. L. D. ISOLA
Affiliation:
Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, Argentina

Abstract

With the aim to study proteinases released to the culture medium during Trypanosoma cruzi metacyclogenesis, the presence of cysteine proteinases (CPs) was analysed in culture supernatants obtained throughout the differentiation induced by stimulation of epimastigotes with Triatoma infestans hindgut homogenate. In SDS-gelatin containing gels, an important endopeptidase activity with apparent molecular weight range between 97 and 116 kDa was encountered at pH 6, which was abolished by the specific cysteine proteinase inhibitor E-64 and TLCK, but not by pepstatin, 1,10 phenantroline or PMSF. This novel CP, named TcCPmet, showed affinity to cystatin-Sepharose, denoting its thiol-proteinase character as well as to ConA-Sepharose, indicating it contains N-linked oligosaccharides. However, it presented a different elution pattern on ConA-Sepharose than cruzipain and, in addition, it was not recognized by anti-cruzipain serum, facts that strongly suggest the different nature of both CPs. Moroever, evidence is presented indicating that TcCPmet was able to hydrolyse the same chromogenic peptides as cruzipain at optimal alkaline pH values, although with a different order of effectiveness. Our results indicate the presence of a novel CP secreted by metacyclic trypomastigotes and reinforces the important role of these enzymes in metacyclogenesis.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aparicio, I. M., Scharfstein, J. and Lima, A. P. ( 2004). A new cruzipain-mediated pathway of human cell invasion by Trypanosoma cruzi requires trypomastigote membranes. Infection and Immunity 72, 58925902.CrossRefGoogle Scholar
Ashall, F. ( 1990). Characterization of an alkaline peptidase of T. cruzi and other Trypanosomatids. Molecular and Biochemical Parasitology 38, 7788.CrossRefGoogle Scholar
Avila, A. R., Dallagiovana, B., Yamada-Ogatta, S. F., Monteiro-Goes, V., Fragoso, S. P., Krieger, M. A. and Goldemberg, S. ( 2003). Stage-specific gene expression during Trypanosoma cruzi metacyclogenesis. Genetics and Molecular Research 2, 159168.Google Scholar
Barboza, M., Duschak, V. G., Cazzulo, J. J., Lederkremer, R. M. and Couto, A. S. ( 2003). Presence of sialic acid in N-linked oligosaccharide chains and O-linked N-acetylglucosamine in cruzipain, the major cysteine proteinase of Trypanosoma cruzi. Molecular and Biochemical Parasitology 126, 293296.CrossRefGoogle Scholar
Barderi, P., Campetella, O., Frasch, A. C., Santomé, J. A., Hellman, U., Petterson, U. and Cazzulo, J. J. ( 1998). The NADP+-linked glutamate dehydrogenase from Trypanosoma cruzi: sequence, genomic organization and expression. The Biochemical Journal 330, 951958.CrossRefGoogle Scholar
Bonaldo, M., D'zscoffier, L., Salles, J. and Goldemberg, S. ( 1991). Characterization and expression of proteases during Trypanosoma cruzi metacyclogenesis. Experimental Parasitology 73, 4451.CrossRefGoogle Scholar
Bourguignon, S., De Souza, W. and Souto-Padron, T. ( 1998). Localization of lectin binding sites on the surface of grown in chemically defined conditions. Histochemistry and Cellular Biology 110, 527534.CrossRefGoogle Scholar
Bradford, J. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Burleigh, B. A., Caler, E. V., Webster, P. and Andrews, N.W. ( 1997). A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signaling in mammalian cells. Journal of Biological Chemistry 136, 609620.Google Scholar
Buscaglia, C., Alfonso, J., Campetella, O. and Frasch, A. C. C. ( 1999). Tandem amino acid repeats from Trypanosoma cruzi shed antigens increase the half life of proteins in blood. Blood 93, 20252032.Google Scholar
Campetella, O., Martinez, J. A. and Cazzulo, J. J. ( 1990). A major cysteine proteinase is developmentally regulated in Trypanosoma cruzi. FEMS Microbiology Letters 67, 145150.CrossRefGoogle Scholar
Campetella, O., Henriksson, J., Aslund, L., Frasch, A. C. C., Petterson, U. and Cazzulo, J. J. ( 1992). The major cysteine proteinase (cruzipain) from Trypanosoma cruzi is encoded by multiple polymorphic tandemly organized genes located on different chromosomes. Molecular and Biochemical Parasitology 50, 225234.CrossRefGoogle Scholar
Cazzulo, J. J. ( 2002). Proteinases of Trypanosoma cruzi: potential targets for the chemotherapy of Chagas disease. Current Topics of Medical Chemistry 11, 12611271.CrossRefGoogle Scholar
Cazzulo, J. J., Cazzulo Franke M. C., Martinez, J. A. and Franke de Cazzulo, B. M. ( 1990). Some kinetic properties of a cysteine proteinase (cruzipain) from Trypanosoma cruzi. Biochimica et Biophysica Acta 1037, 18861891.CrossRefGoogle Scholar
Cazzulo, J. J., Franke de Cazzulo, B. M., Engel, J. C. and Cannata, J. J. B. ( 1985). End products and enzyme levels of aerobic glucose fermentation in trypanosomatids. Molecular and Biochemical Parasitology 16, 329343.CrossRefGoogle Scholar
Cazzulo, J. J., Stoka, V. and Turk, V. ( 1997). Cruzipain, the major cysteine proteinase from the protozoan parasite Trypanosoma cruzi. Biological Chemistry 378, 110.Google Scholar
Cazzulo, J. J., Stoka, V. and Turk, V. ( 2001). The major cysteine proteinase of Trypanosoma cruzi: a valid target for chemotherapy of Chagas disease. Current Pharmacological Design 7, 11431156.CrossRefGoogle Scholar
De Andrade, A. F., Esteves, M. J., Angluster, J., Gonzalez-Perdomo, M. and Goldemberg, S. ( 1991). Changes in cell-surface carbohydrates of Trypanosoma cruzi during metacyclogenesis under chemically defined conditions. Journal of Genetics Microbiology 137, 28452849.CrossRefGoogle Scholar
De Souza, W. ( 1983). A simple method to purify biologically and antigenically preserved bloodstream trypomastigotes of Trypanosoma cruzi using DEAE-cellulose columns. Memorias Instituto Oswaldo Cruz 83, 123133.Google Scholar
De Souza, W. ( 1995). Structural organization of the cell surface of pathogenic protozoa. Micron 26, 405430.CrossRefGoogle Scholar
Del Nery, E., Meldal M. A., Svenden, I., Scharfstein, J., Walmsley, A. and Juliano, L. ( 1997). Characterization of the substrate specific of the major cysteine proteinase (cruzipain) from Trypanosoma cruzi using a portion-mixing combinatorial library and fluorogenic peptides. The Biochemical Journal 323, 427433.CrossRefGoogle Scholar
Duschak, V. G., Barboza, M. and Couto, A. S. ( 2003). Trypanosoma cruzi: partial characterization of minor cruzipain isoforms non-adsorbed to Concanavalin A-Sepharose. Experimental Parasitology 104, 122130.CrossRefGoogle Scholar
Duschak, V. G., Ciaccio, M., Nasser, J. R. and Basombrio, M. A. ( 2001 b). Enzymatic activity, protein expression and gene sequence of cruzipain in virulent and attenuated Trypanosoma cruzi strains. Journal of Parasitology 87, 10161022.Google Scholar
Duschak, V. G., Segura, E., Riarte, A. and Laucella, S. ( 2001 a). Humoral immune response to cruzipain and cardiac dysfunction in chronic Chagas disease. Immunology Letters 78, 135142.Google Scholar
Engel, J. C., Doyle, P. S. and McKerrow, J. H. ( 1999). Trypanocidal effect of cysteine protease inhibitors in vitro and in vivo in Chagas disease. Medicina (Bs As) 59, 171175.Google Scholar
Engel, J. C. and Parodi, A. J. ( 1985). Trypanosoma cruzi cells undergo an alteration in protein N-glycosylation upon differentiation. Journal of Biological Chemistry 260, 1010510110.Google Scholar
Esteves, M. G., González-Perdomo, M., Alviano, C. S., Angluster, J. and Goldemberg, S. ( 1989). Changes in fatty acid composition associated with differentiation of Trypanosoma cruzi. FEMS Microbiology Letters 50, 3134.CrossRefGoogle Scholar
Fraidenraich, D., Peña, C., Isla, E., Lammel, E. M., Coso, O., Añel, A. D., Barrale, F., Torres, H. N. and Flawia, M. M. ( 1993). An alpha D-globin fragment from Triatoma infestans hindgut stimulates Trypanosoma cruzi adenylyl cyclase and promotes metacyclogenesis. Biological Research 26, 279283.Google Scholar
Franke de Cazzulo, B. M., Martinez, J. A., North, M. J., Coombs, G. H. and Cazzulo, J. J. ( 1994). Effects of proteinase inhibitors on growth and differentiation of Trypanosoma cruzi. FEMS Microbiology Letters 124, 8186.CrossRefGoogle Scholar
García, E., González, M. S., De Azambuja, P., Barrale, F., Fraidenraich, D., Torres, H. N. and Flawia, M. M. ( 1995). Induction of Trypanosoma cruzi metacyclogenesis in the gut of the hematophagous insect vector, Rhodnius prolixus, by haemoglobin and peptides carrying alpha D globin sequences. Experimental Parasitology 81, 255261.CrossRefGoogle Scholar
González Cappa, S. M., Bijovsky, A. T., Freilij, H., Muller, L. A. and Katzin, M. A. ( 1981). Aislamiento de una cepa de Trypanosoma cruzi a predominio de formas delgadas en la Argentina. Medicina (Bs As) 41, 119120.Google Scholar
Greiller, P., Vendeville, S., Joyeau, R., Bastos, I. M., Drobecq, H., Frappier, F., Teixeira, A. R., Schrevel, J., Davioud-Charvet, E., Sergheraert, C. and Santana, J. M. ( 2001). Trypanosoma cruzi prolyl oligopeptidase Tc80 is involved in nonphagocytic mammalian cell invasion by trypomastigotes. Journal of Biological Chemistry 276, 4707847086.CrossRefGoogle Scholar
Isola, E. L., Lammel, E. M., Katzin, V. J. and González Cappa, S. M. ( 1981). Influence of organ extracts of Triatoma infestans on different of Trypanosoma cruzi. Journal of Parasitology 67, 5358.CrossRefGoogle Scholar
Isola, E. L., Lammel, E. M. and González Cappa, S. M. ( 1986). Trypanosoma cruzi: differentiation after interaction of epimastigotes and Triatoma infestans intestinal homogenate. Experimental Parasitology 62, 329335.CrossRefGoogle Scholar
Isola, E. L., Lammel, E. M., Muller, L. and González Cappa, S. M. ( 1987). Culture medium for a continuous source of Trypanosoma cruzi metacyclic forms. Journal of Parasitology 73, 441443.CrossRefGoogle Scholar
Laemmli, U. K. ( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227, 680685.CrossRefGoogle Scholar
Lowndes, C. M., Bonaldo, M. C., Thomas, N. and Goldemberg, S. ( 1996). Heterogeneity of metalloproteinase expression in Trypanosoma cruzi. Parasitology 112, 393399.CrossRefGoogle Scholar
McGadey, A. ( 1970). A tetrazolium method for non-specific alkaline phosphatase. Histochemie 23, 180184.CrossRefGoogle Scholar
McKerrow, J. H., Mc Grath, M. E. and Engel, J. C. ( 1995). The cysteine protease of Trypanosoma cruzi as a model for antiparasite drug design. Parasitology Today 11, 279282.CrossRefGoogle Scholar
Oakley, B. R., Kirsch, D. R. and Morris, N. R. ( 1980). A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Analytical Biochemistry 105, 361363.CrossRefGoogle Scholar
Parodi, A. J., Labriola, C, and Cazzulo, J. J. ( 1995). The presence of complex type oligosaccharides at the C-terminal domain glycosylation site of some molecules of cruzipain. Molecular and Biochemical Parasitology 69, 247255.CrossRefGoogle Scholar
Parodi, A. J., Pollevick, G. D., Mautner, M., Buschiazzo, A., Sanchez, D. and Frasch, A. C. C. ( 1992). Identification of the genes coding for the trans-sialidase of Trypanosome cruzi. EMBO Journal 11, 17051710.Google Scholar
Parussini, F., Duschak, V. G.. and Cazzulo, J. J. ( 1998). Membrane bound cysteine proteinase isoforms in different developmental stages of Trypanosoma cruzi. Cellular and Molecular Biology 44, 513519.Google Scholar
Santana, J., Greiller, P., Schrevel, J. and Teixeira, A. R. ( 1997). A Trypanosoma cruzi-secreted 80 kDa proteinase with specificity for human collagen types I and IV. Biochemical Journal 325, 129137.CrossRefGoogle Scholar
Scharfstein, J., Schmitz, V., Morandi, V., Capella, M. M., Lima, A. P., Morrot, A., Juliano, L. and Muller-Esterl, W. ( 2000). Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B(2) receptors. Journal of Experimental Medicine 192, 12891300.CrossRefGoogle Scholar
Soares, M. J. ( 1999). The reservosome of Trypanosome cruzi epimastigotes: an organelle of the endocytic pathway with a role on metacyclogenesis. Memorias Instituto Oswaldo Cruz 94, 139141.CrossRefGoogle Scholar
Souto-Padrón, T., Campetella, O., Cazzulo, J. J. and De Souza, W. ( 1990). Cysteine proteinase in Trypanosoma cruzi: immunocytochemical localization and involvement in parasite-host cell interaction. Journal of Cell Science 96, 485490.Google Scholar
Tomas, A., Miles, M. M. and Kelly, J. M. ( 1997). Overexpression of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, is associated with enhanced metacyclogenesis. European Journal of Biochemistry 244, 596603.CrossRefGoogle Scholar
Torruela, M., Franke de Cazzulo, B. M., Engel, J. C., Ruiz, A. M., Segura, E. L. and Cazzulo, J. J. ( 1981). Trypanosoma cruzi and Trypanosoma rangeli: Glutamate dehydrogenases and proteolytic activities. Comparative Biochemistry and Physiology 70, 463468.CrossRefGoogle Scholar
Wainszelbaun, M. J., Belaunzaran, M. L., Lammel, E. M., Florin-Christensen, M., Florin-Christensen, J. and Isola, E. L. D. ( 2003). Free fatty acids induce cell differentiation to infective forms in Trypanosoma cruzi. The Biochemical Journal 375, 705712.CrossRefGoogle Scholar
Yokoyama-Yasunaka, J. K. U., Pral, E. M. F., Oliveira, O. C. Jr, Alfieri, S. C. and Stolf, A. M. S. ( 1994). Trypanosoma cruzi: Identification of proteinases in shed components of trypomastigote forms. Acta Tropica 57, 307315.CrossRefGoogle Scholar