Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T22:51:17.308Z Has data issue: false hasContentIssue false

A novel assay for the detection of anthelmintic activity mediated by cuticular damage to nematodes: validation on Caenorhabditis elegans exposed to cysteine proteinases

Published online by Cambridge University Press:  30 January 2017

A. M. PHIRI
Affiliation:
School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK Department of Clinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, Zambia
D. I. DE POMERAI
Affiliation:
School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
D. J. BUTTLE
Affiliation:
Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield S10 2RX, UK
J. M. BEHNKE*
Affiliation:
School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
*
*Corresponding author. School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK. E-mail: [email protected]

Summary

Plant cysteine proteinases (CPs) from Carica papaya kill parasitic and free-living nematodes in vitro by hydrolysis of the worm cuticle, a mechanism that is different to all commercially available synthetic anthelmintics. We have developed a cheap and effective, rapid-throughput Caenorhabditis elegans-based assay for screening plant CP extracts for anthelmintic activity targeting cuticular integrity. The assay exploits colorimetric methodology for assessment of cuticular damage, and is based on the ability of viable cells to incorporate and bind Neutral red dye within lysosomes and to release the dye when damaged. Living worms are pre-stained with the dye, exposed to CPs and then leakage of the dye through the damaged cuticle is quantified by spectrophotometry. In contrast to motility assays and semi-subjective interpretation of microscopical images, this colorimetric assay is independent of observer bias. Our assay was applied to a series of C. elegans bus mutant strains with leaky cuticles and to cystatin knockout mutants. At ambient temperature and over 0.5–24 h, both bus mutants and the cystatin knockouts were highly susceptible to CPs, whereas wild-type Bristol N2 worms were essentially unstained by Neutral red and unaffected by CPs, providing validation for the utility of this assay.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Babich, H. and Borenfreund, E. (1990). Applications of the Neutral red cytotoxicity assay to in vitro toxicology. Atla-Alternatives to Laboratory Animals 18, 129144.CrossRefGoogle Scholar
Behnke, J., Buttle, D., Stepek, G., Lowe, A. and Duce, I. (2008). Developing novel anthelmintics from plant cysteine proteinases. Parasites and Vectors 1, 118.CrossRefGoogle ScholarPubMed
Borenfreund, E. and Puerner, J. A. (1984). A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR90). Journal of Tissue Culture Methods 9, 79.CrossRefGoogle Scholar
Boyd, W. A., McBride, S. J., Rice, J. R., Snyder, D. W. and Freedman, J. H. (2010). A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicology and Applied Pharmacology 245, 153159.CrossRefGoogle ScholarPubMed
Buckingham, S. D. and Sattelle, D. B. (2009). Fast, automated measurement of nematode swimming (thrashing) without morphometry. BMC Neuroscience 10, 84.CrossRefGoogle ScholarPubMed
Buckingham, S. D., Partridge, F. A. and Sattelle, D. B. (2014). Automated high-throughput motility analysis in C. elegans and parasitic nematodes: applications in the search for new anthelmintics. Internal Journal of Parasitology Drugs Resist 4, 226232.CrossRefGoogle Scholar
Buttle, D. J., Dando, P. M., Coe, P. F., Sharp, S. L., Shepherd, S. T. and Barrett, A. J. (1990). The preparation of fully active chymopapain free of contaminating proteinases. Biological Chemistry Hoppe-Seyler 371, 10831088.CrossRefGoogle ScholarPubMed
Buttle, D. J., Behnke, J. M., Bartley, Y., Elsheikha, H. M., Bartley, D. J., Garnett, M. C., Donnan, A. A., Jackson, F., Lowe, A. and Duce, I. R. (2011). Oral dosing with papaya latex is an effective anthelmintic treatment for sheep infected with Haemonchus contortus . Parasites and Vectors 15, 11.Google Scholar
Cavanaugh, P. F. Jr., Moskwa, P. S., Donish, W. H., Pera, P. J., Richardson, D. and Andrese, A. P. (1990). A semi-automated Neutral red based chemosensitivity assay for drug screening. Investigational New Drugs 8, 347354.CrossRefGoogle ScholarPubMed
Craig, H., Isaac, R. E. and Brooks, D. R. (2007). Unravelling the moulting degradome: new opportunities for chemotherapy? Trends in Parasitology 23, 248253.CrossRefGoogle ScholarPubMed
Girishkumar, V., Sreepriya, M., Praveenkumar, S., Bali, G., and Jagadeesh, M. S. (2010). Modulating effect of Leptadenia reticulata (Retz) Wight & arn against chromate (VI)-induced immunosuppression and oxidative stress on mouse splenic lymphocytes and bone marrow derived macrophages. Journal of Ethnopharmacology 131, 505508.CrossRefGoogle ScholarPubMed
Gravato-Nobre, M. J. and Hodgkin, J. (2005). Caenorhabditis elegans as a model for innate immunity to pathogens. Cellular Microbiology 7, 741751.CrossRefGoogle Scholar
Gravato-Nobre, M. J., Nicholas, H. R., Nijland, R., O'Rourke, D., Whittington, D. E., Yook, K. J. and Hodgkin, J. (2005). Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum . Genetics 171, 10331045.CrossRefGoogle Scholar
Guven, K., Duce, J. A. and de Pomerai, D. I. (1994). Evaluation of a stress-inducible transgenic nematode strain for rapid aquatic toxicity testing. Aquatic Toxicology 29, 119137.CrossRefGoogle Scholar
Katiki, L. M., Ferreira, J. F., Zajac, A. M., Masler, C., Lindsay, D. S., Chagas, A. C. and Amarante, A. F. (2011). Caenorhabditis elegans as a model to screen plant extracts and compounds as natural anthelmintics for veterinary use. Veterinary Parasitology 182, 264826.CrossRefGoogle Scholar
Koehring, V. (1930). The Neutral-red reaction. Journal of Morphology 49, 45137.CrossRefGoogle Scholar
Levecke, B., Buttle, D. J., Behnke, J. M., Duce, I. R. and Vercruysse, J. (2014). Cysteine proteinases from papaya (Carica papaya) in the treatment of experimental Trichuris suis infection in pigs: two randomized controlled trials. Parasites and Vectors 7, 255.CrossRefGoogle ScholarPubMed
Liebsch, H. M. and Spielmann, H. (1995). Balb/c 3T3 cytotoxicity test. Methods in Molecular Biology (Clifton, N.J.) 43, 177187.Google ScholarPubMed
Luoga, W., Mansur, F., Buttle, D. J., Duce, I. R., Garnett, M. C., Lowe, A. and Behnke, J. M. (2015). The relative anthelmintic efficacy of plant-derived cysteine proteinases on intestinal nematodes. Journal of Helminthology 89, 165174.CrossRefGoogle ScholarPubMed
Nemes, Z., Dietz, R., Luth, J. B., Gomba, S., Hackenthal, E. and Gross, F. (1979). The pharmacological relevance of vital staining with Neutral red. Experientia 35, 14751476.CrossRefGoogle ScholarPubMed
Palaima, E., Leymarie, N., Stroud, D., Mizanur, R. M., Hodgkin, J., Gravato-Nobre, M. J., Costello, C. E. and Cipollo, J. F. (2010). The Caenorhabditis elegans bus-2 mutant reveals a new class of O-glycans affecting bacterial resistance. Journal of Biological Chemistry 285, 1766217672.CrossRefGoogle ScholarPubMed
Parish, C. R. and Müllbacher, A. (1983). Automated colorimetric assay for T cell cytotoxicity. Journal of Immunological Methods 58, 225237.CrossRefGoogle ScholarPubMed
Partridge, F. A., Tearle, A. W., Gravato-Nobre, M. J., Schafer, W. R. and Hodgkin, J. (2008). The C. elegans glycosyltransferase BUS-8 has two distinct and essential roles in epidermal morphogenesis. Developmental Biology 317, 549559.CrossRefGoogle Scholar
Phiri, A. M., De Pomerai, D., Buttle, D. J. and Behnke, J. M. (2014). Developing a rapid throughput screen for detection of nematicidal activity of plant cysteine proteinases: the role of Caenorhabditis elegans cystatins. Parasitology 141, 164180.CrossRefGoogle ScholarPubMed
Repetto, G. and Sanz, P. (1993). Neutral red uptake, cellular growth and lysosomal function: in vitro effects of 24 metals. Alternatives to Laboratory Animals 21, 501507.CrossRefGoogle Scholar
Repetto, G., del Peso, A. and Zurita, J. L. (2008). Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nature Protocols 3, 11251131.CrossRefGoogle ScholarPubMed
Simpkin, K. G. and Coles, G. C. (1981). The use of Caenorhabditis elegans for anthelmintic screening. Journal of Chemical Technology and Biotechnology 31, 6669.CrossRefGoogle Scholar
Stepek, G., Behnke, J. M., Buttle, D. J. and Duce, I. R. (2004). Natural plant cysteine proteinases as anthelmintics?. Trends in Parasitology 20, 322327.CrossRefGoogle ScholarPubMed
Stepek, G., Duce, I. R., Buttle, D. J., Lowe, A. and Behnke, J. M. (2005). Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode, Heligmosomoides polygyrus, in vitro . Parasitology 130, 203211.CrossRefGoogle ScholarPubMed
Stepek, G., Lowe, A. E., Buttle, D. J., Duce, I. R. and Behnke, J. M. (2007). The anthelmintic efficacy of plant-derived cysteine proteinases against the rodent gastrointestinal nematode, Heligmosomoides polygyrus, in vivo . Parasitology 134, 14091419.CrossRefGoogle ScholarPubMed
Thorne, D., Kilford, J., Payne, R., Haswell, L., Dalrymple, A., Meredith, C. and Dillon, D. (2014). Development of a BALB/c 3T3 neutral red uptake cytotoxicity test using a mainstream cigarette smoke exposure system. BMC Research Notes 7, 367. http://doi.org/10.1186/1756-0500-7-367 CrossRefGoogle ScholarPubMed
Weeks, J. M. and Svendsen, C. (1996). Neutral red retention by lysosomes from earthworm (Lumbricus rubellus) coelomocytes: a simple biomarker of exposure to soil copper. Environmental Toxicology and Chemistry 15, 18011805.CrossRefGoogle Scholar
Williams, P. L. and Dusenbery, D. B. (1990). Aquatic toxicity testing using the nematode, Caenorhabditis elegans . Environmental Toxicology and Chemistry 9, 12851290.CrossRefGoogle Scholar
Winckler, J. (1974). Vital staining of lysosomes and other cell organelles of the rat with Neutral red. Progress in Histochemistry and Cytochemistry 6, 191.CrossRefGoogle ScholarPubMed
Zhang, Z. S., Lipsky, M. M., Trump, B. F. and Hsu, I. C. (1990). Neutral red (NR) assay for cell viability and xenobiotic-induced cytotoxicity in primary cultures of human and rat hepatocytes. Cell Biology and Toxicology 6, 219234.CrossRefGoogle ScholarPubMed