Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-03T03:01:33.077Z Has data issue: false hasContentIssue false

Northward invasion of the parasitic deer ked (Lipoptena cervi), is there geographical variation in pupal size and development duration?

Published online by Cambridge University Press:  30 September 2010

SIRPA KAUNISTO*
Affiliation:
University of Eastern Finland, Faculty of Science and Forestry, Department of Biology, P.O. Box 111, FI-80101 Joensuu, Finland
LAURA HÄRKÖNEN
Affiliation:
University of Oulu, Department of Biology, P.O. Box 3000, FI-90014 Oulu, Finland
PEKKA NIEMELÄ
Affiliation:
University of Eastern Finland, Faculty of Science and Forestry, Department of Biology, P.O. Box 111, FI-80101 Joensuu, Finland University of Turku, Department of Biology, FI-20014 Turku, Finland
HEIKKI ROININEN
Affiliation:
University of Eastern Finland, Faculty of Science and Forestry, Department of Biology, P.O. Box 111, FI-80101 Joensuu, Finland
HANNU YLÖNEN
Affiliation:
University of Jyväskylä, Department of Biological and Environmental Science, Konnevesi Research Station, P.O. Box 35, FI-40014 Jyväskylä, Finland
*
*Corresponding author: University of Eastern Finland, Faculty of Science and Forestry, Department of Biology, P.O. Box 111, FI-80101 Joensuu, Finland. Fax: +358 13 251 3590. E-mail: [email protected]

Summary

The deer ked (Lipoptena cervi) is a common ectoparasite of cervids. During the last decades the species has rapidly invaded in northern Europe, especially in Finland, towards the north and increased its prevalence on the moose population. Consequently, during this rapid invasion the deer ked has faced more severe climatic conditions. We studied whether pupal size (measured as pupal weight) and pupal development duration of the deer ked varies along historical invasion zones and temperature zones towards north in Finland. Moreover, we explored possible size- and gender-dependent variation in pupal development duration. We divided wild-collected pupae in respect to their origin in two ways: (1) temperature zones (from south-west to colder north-east) and (2) invasion history (from early to late establishment). We reared pupae in the controlled laboratory conditions in identical temperature and light conditions. Pupal size decreased towards north and the smaller pupae developed faster. However, the results do not show differences in pupal size or developmental characteristics between the invasion zones. This supports the idea of rapid developmental plasticity of the deer ked and that not the invasion history but the current temperature regime determines the life history of the deer ked when invading towards a colder environment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkinson, D. and Sibly, R. M. (1997). Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology & Evolution 12, 235239.CrossRefGoogle ScholarPubMed
Beaumont, L. J. and Hughes, L. (2002). Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change. Global Change Biology 8, 954971.CrossRefGoogle Scholar
Bequaert, J. C. (1953). The Hippoboscidae or louse-flies (Diptera) of mammals and birds. Part I. Structure, physiology and natural history. Entomologica Americana 32, 1209.Google Scholar
Bequaert, J. C. (1954). The Hippoboscidae or louse-Flies (Diptera) of mammals and birds. Part II. Taxonomy, evolution and revision of American genera and species. Entomologica Americana 34, 1232.Google Scholar
Blanckenhorn, W. U. and Demont, M. (2004). Bergmann and Converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integrative and Comparative Biology 44, 413424.CrossRefGoogle ScholarPubMed
Chown, S. L. and Gaston, K. J. (1999). Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biological Reviews of the Cambridge Philosophical Society 74, 87120.Google Scholar
Chown, S. L. and Gaston, K. J. (2010). Body size variation in insects: a macroecological perspective. Biological Reviews 85, 139169.CrossRefGoogle ScholarPubMed
Conover, D. O. and Present, T. M. C. (1990). Countergradient variation in growth rate: Compensation for length of the growing season among Atlantic silversides from different latitudes. Oecologia 83, 316324.CrossRefGoogle ScholarPubMed
Dehio, C., Sauder, U. and Hiestand, R. (2004). Isolation of Bartonella schoenbuchensis from Lipoptena cervi, a blood-sucking arthropod causing deer ked dermatitis. Journal of Clinical Microbiology 42, 53205323.CrossRefGoogle Scholar
Feder, J. L., Powell, T. H. Q., Filchak, K. and Leung, B. (2010). The diapause response of Rhagoletis pomonella to varying environmental conditions and its significance for geographic and host plant-related adaptation. Entomologia Experimentalis et Applicata 136, 3144.CrossRefGoogle Scholar
Finnish Meteorological Institute (2010). http://www.fmi.fi/saa/tilastot_99.html#1.Google Scholar
Haarløv, N. (1964). Life cycle and distribution pattern of Lipoptena cervi (L.) (Dipt., Hippobosc.) on Danish deer. Oikos 15, 93129.CrossRefGoogle Scholar
Hackman, W. (1977). Hirven täikärpänen ja sen levittäytyminen Suomeen. Luonnon Tutkija 81, 7577.Google Scholar
Hackman, W. (1979). Älglusflugans, Lipoptena cervi, invandringshistoria i Finland. Entomologisk Tidsskrift 100, 208210.Google Scholar
Hackman, W., Rantanen, T. and Vuojolahti, P. (1983). Immigration of Lipoptena cervi (Diptera, Hippoboscidae) in Finland, with notes on its biology and medical significance. Notulae Entomologicae 63, 5359.Google Scholar
Härkönen, L., Härkönen, S., Kaitala, A., Kaunisto, S., Kortet, R., Laaksonen, S. and Ylönen, H. (2010). Predicting range expansion of an ectoparasite – the effect of summer temperatures on deer ked (Lipoptena cervi, Diptera: Hippoboscidae) performance along a latitudinal gradient. Ecography (in the Press). doi:10.1111/j.1600–0587.2009.05890.xCrossRefGoogle Scholar
Ivanov, V. I. (1974). On the damage done by Lipoptena cervi L. (Diptera, Hippoboscidae) in Byelorussia. Parazitologiya 8, 252253.Google Scholar
Kadulski, S. (1996). Ectoparasites of Cervidae in north-east Poland. Acta Parasitologica 41, 204210.Google Scholar
Kaitala, A., Kortet, R., Härkönen, S., Laaksonen, S., Härkönen, L., Kaunisto, S. and Ylönen, H. (2009). Deer ked, an ectoparasite of moose in Finland: A brief review of its biology and invasion. Alces 45, 8588.Google Scholar
Kaunisto, S., Kortet, R., Härkönen, L., Härkönen, S., Ylönen, H. and Laaksonen, S. (2009). New bedding site examination-based method to analyse deer ked (Lipoptena cervi) infection in cervids. Parasitology Research 104, 919925.CrossRefGoogle ScholarPubMed
Keilbach, R. (1966). Die tierischen Schädlinge Mitteleuropas. Gustav Fischer, Jena, Germany.Google Scholar
Kortet, R., Kaunisto, S., Härkönen, L., Hokkanen, P., Härkönen, S., Kaitala, A. and Ylönen, H. (2010). Experiments on the ectoparasitic deer ked that often attacks humans; preferences for body parts, colour and temperature. Bulletin of Entomological Research 100, 279285. doi:10.1017/S0007485309990277.CrossRefGoogle ScholarPubMed
Kynkäänniemi, S. M., Kortet, R., Härkönen, L., Kaitala, A., Paakkonen, T., Mustonen, A. M., Nieminen, P., Härkönen, S., Ylönen, H. and Laaksonen, S. (2010). Threat of an invasive parasitic fly, the deer ked (Lipoptena cervi), to the reindeer (Rangifer tarandus tarandus): experimental infection and treatment. Annales Zoologici Fennici 47, 2836.CrossRefGoogle Scholar
Laukkanen, A., Ruoppi, P. and Mäkinen-Kiljunen, S. (2005). Deer ked induced occupational allergic rhinoconjunctivitis. Annals of Allergy, Asthma and Immunology 94, 604608.CrossRefGoogle ScholarPubMed
Lehane, M. (2005). The Biology of Blood-Sucking in Insects. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Leimar, O. (1996). Life history plasticity: influence of photoperiod on growth and development in the common blue butterfly. Oikos 76, 228234.CrossRefGoogle Scholar
Levinton, J. S. and Monahan, R. K. (1983). The latitudinal compensation hypothesis: Growth data and a model of latitudinal growth differentiation based upon energy budgets. II. Intraspecific comparisons between subspecies of Ophryotrocha puerilis. The Biological Bulletin 165, 699707.CrossRefGoogle Scholar
Maa, T. C. (1969). A revised checklist and concise host index of Hippoboscidae (Diptera). Pacific Insects Monograph 20, 261299.Google Scholar
Masaki, S. (1967). Geographic variation and climatic adaptation in a field cricket (Orthopetra: Gryllidae). Evolution 21, 725741.CrossRefGoogle Scholar
Masaki, S. (1978). Seasonal and latitudinal adaptations in the life cycles of crickets. In Evolution of Insect Migration and Diapause (ed. Dingle, H.), pp. 72100. Springer-Verlag, New York, USA.CrossRefGoogle Scholar
Matsumoto, K., Berrada, Z. L., Klinger, E., Goethert, H. K. and Telford, S. R. (2008). Molecular detection of Barthonella schoenbuchensis from ectoparasites of deer in Massachusetts. Vector Borne and Zoonotic Diseases 8, 549554.CrossRefGoogle ScholarPubMed
Mcinnis, D. O., Wendel, L. E. and Whitten, C. J. (1983). Directional selection and heritability for pupal weight in the screwworm, Cochliomyia hominivorax (Diptera: Calliphoridae). Annals of the Entomological Society of America 76, 3036.CrossRefGoogle Scholar
Mousseau, T. A. (1997). Ectotherms follow the converse to Bergmann's Rule. Evolution 51, 630632.CrossRefGoogle ScholarPubMed
Nylin, S. and Svärd, L. (1991). Latitudinal patterns in the size of European butterflies. Holarctic Ecology 14, 192202.Google Scholar
Paakkonen, T., Mustonen, A. M., Roininen, H., Niemelä, P., Ruusila, V. and Nieminen, P. (2010). Parasitism of the deer ked, Lipoptena cervi, on the moose, Alces alces, in eastern Finland. Medical and Veterinary Entomology (in the Press).CrossRefGoogle ScholarPubMed
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology and Systematics 37, 637669.CrossRefGoogle Scholar
Qiu, J. and Hardin, P. E. (1996). Developmental state and the circadian clock interact to influence the timing of eclosion in Drosophila melanogaster. Journal of Biological Rhythms 11, 7586.CrossRefGoogle ScholarPubMed
Rantanen, T., Reunala, T., Vuojolahti, P. and Hackman, W. (1982). Persistent pruritic papules from deer ked bites. Acta Dermato-Venereologica 62, 307311.CrossRefGoogle ScholarPubMed
Statens Veterinärmedicinska Anstalt (2007). Sjukdomsläget hos vilt I Sverige 2006. National Veterinary Institute's Report Series No. 1. National Veterinary Institute, Uppsala, Sweden.Google Scholar
Statens Veterinärmedicinska Anstalt (2008). Sjukdomsläget hos vilt I Sverige 2007. National Veterinary Institute's Report Series No. 6. National Veterinary Institute, Uppsala, Sweden.Google Scholar
Stevens, D. J. (2004). Pupal development temperature alters adult phenotype in the speckled wood butterfly, Pararge aegeria. Journal of Thermal Biology 29, 205210.CrossRefGoogle Scholar
Tauber, M. J., Tauber, C. A. and Masaki, S. (1986). Seasonal Adaptations of Insects. Oxford University Press, New York, USA.Google Scholar
Taylor, B. W., Anderson, C. R. and Peckarsky, B. L. (1998). Effects of size at metamorphosis on stonefly fecundity, longevity and reproductive success. Oecologia 114, 494502.CrossRefGoogle ScholarPubMed
Telfer, M. G. and Hassall, M. (1999). Ecotypic differentiation in the grasshopper Chorthippus brunneus: life history varies in relation to climate. Oecologia 121, 245254.CrossRefGoogle ScholarPubMed
Vanhanen, H., Veteli, T. O., Päivinen, S., Kellomäki, S. and Niemelä, P. (2007). Climate change and range shifts in two insect defoliators: gypsy moth and nun moth – a model study. Silva Fennica 41, 621638.CrossRefGoogle Scholar
Vikøren, T., Ytrehus, B. and Handeland, K. (2008). Helseovervåkingsprogrammet for hjortevilt (HOP), Årsrapport for 2006 og 2007 – National Veterinary Institute's Report Series 19/2008. National Veterinary Institute, Oslo, Norway.Google Scholar
Välimäki, P., Härkönen, L., Härkönen, S., Kaitala, A., Kortet, R., Madslien, K., Malmsten, J., Redford, L., Ylönen, H. and Ytherus, B. (2010). Fennoscandian distribution of an important parasite of cervids, the deer ked (Lipoptena cervi), revisited. Parasitology Research 107, 117125. doi: 10.1007/s00436-010-1845-7.CrossRefGoogle ScholarPubMed
Watari, Y. (2002). Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua: the effect of thermoperiod. Journal of Insect Physiology 48, 881886.CrossRefGoogle ScholarPubMed
West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. Oxford University Press, New York, USA.CrossRefGoogle Scholar
Wiklund, C., Lindfors, V. and Forsberg, J. (1996). Early male emergence and reproductive phenology of the adult overwintering butterfly Gonepteryx rhamni in Sweden. Oikos 75, 227240.CrossRefGoogle Scholar