Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T01:16:29.122Z Has data issue: false hasContentIssue false

New insights on the genetic diversity of the honeybee parasite Nosema ceranae based on multilocus sequence analysis

Published online by Cambridge University Press:  23 July 2013

MATHIEU ROUDEL
Affiliation:
Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes : Génome et Environnement’, BP 10448, 63000 Clermont-Ferrand, France CNRS, UMR 6023, LMGE, 63171 Aubière, France
JULIE AUFAUVRE
Affiliation:
Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes : Génome et Environnement’, BP 10448, 63000 Clermont-Ferrand, France CNRS, UMR 6023, LMGE, 63171 Aubière, France
BRUNO CORBARA
Affiliation:
Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes : Génome et Environnement’, BP 10448, 63000 Clermont-Ferrand, France CNRS, UMR 6023, LMGE, 63171 Aubière, France
FREDERIC DELBAC
Affiliation:
Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes : Génome et Environnement’, BP 10448, 63000 Clermont-Ferrand, France CNRS, UMR 6023, LMGE, 63171 Aubière, France
NICOLAS BLOT*
Affiliation:
Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes : Génome et Environnement’, BP 10448, 63000 Clermont-Ferrand, France CNRS, UMR 6023, LMGE, 63171 Aubière, France
*
*Corresponding author: Université Blaise Pascal, Laboratoire ‘Microorganismes: Génome et Environnement’ CNRS UMR 6023, 63177 Aubière, France. E-mail: [email protected]

Summary

The microsporidian parasite Nosema ceranae is a common pathogen of the Western honeybee (Apis mellifera) whose variable virulence could be related to its genetic polymorphism and/or its polyphenism responding to environmental cues. Since the genotyping of N. ceranae based on unique marker sequences had been unsuccessful, we tested whether a multilocus approach, assessing the diversity of ten genetic markers – encoding nine proteins and the small ribosomal RNA subunit – allowed the discrimination between N. ceranae variants isolated from single A. mellifera individuals in four distant locations. High nucleotide diversity and allele content were observed for all genes. Most importantly, the diversity was mainly present within parasite populations isolated from single honeybee individuals. In contrast the absence of isolate differentiation precluded any taxa discrimination, even through a multilocus approach, but suggested that similar populations of parasites seem to infect honeybees in distant locations. As statistical evolutionary analyses showed that the allele frequency is under selective pressure, we discuss the origin and consequences of N. ceranae heterozygosity in a single host and lack of population divergence in the context of the parasite natural and evolutionary history.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antùnez, K., Martin-Hernandez, R., Prieto, L., Meana, A., Zunino, P. and Higes, M. (2009). Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental Microbiology 11, 22842290. doi: 10.1111/j.1462-2920.2009.01953.x.CrossRefGoogle ScholarPubMed
Bendtsen, J. D., Nielsen, H., von Heijne, G. and Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology 340, 783795.CrossRefGoogle ScholarPubMed
Becnel, J. J. and Andreadis, T. G. (1999). Microsporidia in insects. In The Microsporidia and Microsporidiosis (ed. Wittner, M. and Weiss, L. M.), pp. 447501. ASM Press, Washington, DC, USA.Google Scholar
Birky, C. W. Jr. (1996). Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 144, 427437.CrossRefGoogle ScholarPubMed
Botias, C., Anderson, D. L., Meana, A., Garrido-Bailon, E., Martin-Hernandez, R. and Higes, M. (2012). Further evidence of an oriental origin for Nosema ceranae (Microsporidia: Nosematidae). Journal of Invertebrate Pathology 110, 108113. doi: 10.1016/j.jip.2012.02.014.CrossRefGoogle ScholarPubMed
Bromenshenk, J. J., Henderson, C. B., Wick, C. H., Stanford, M. F., Zulich, A. W., Jabbour, R. E., Deshpande, S. V., McCubbin, P. E., Seccomb, R. A., Welch, P. M., Williams, T., Firth, D. R., Skowronski, E., Lehmann, M. M., Bilimoria, S. L., Gress, J., Wanner, K. W. and Cramer, R. A. Jr. (2010). Iridovirus and microsporidian linked to honey bee colony decline. PLoS ONE 5, e13181. doi: 10.1371/journal.pone.0013181.CrossRefGoogle ScholarPubMed
Cali, A. and Takvorian, P. M. (1999). Developmental morphology and life cycles of the microsporidia. In The Microsporidia and Microsporidiosis (ed. Wittner, M. and Weiss, L. M.), pp. 85128. ASM Press, Washington, DC, USA.Google Scholar
Capella-Gutiérrez, S., Marcet-Houben, M. and Gabaldón, T. (2012). Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biology 10, 47. doi: 10.1186/1741-7007-10-47.CrossRefGoogle ScholarPubMed
Chaimanee, V., Warrit, N. and Chantawannakul, P. (2010). Infections of Nosema ceranae in four different honeybee species. Journal of Invertebrate Pathology 105, 207210. doi: 10.1016/j.jip.2010.06.005.CrossRefGoogle ScholarPubMed
Chaimanee, V., Chen, Y., Pettis, J. S., Scott Cornman, R. and Chantawannakul, P. (2011). Phylogenetic analysis of Nosema ceranae isolated from European and Asian honeybees in Northern Thailand. Journal of Invertebrate Pathology 107, 229233. doi: 10.1016/j.jip.2011.05.012.CrossRefGoogle ScholarPubMed
Chaimanee, V., Chantawannakul, P., Chen, Y., Evans, J. D. and Pettis, J. S. (2012). Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. Journal of Insect Physiology 58, 10901095. doi: 10.1016/j.jinsphys.2012.04.016.CrossRefGoogle ScholarPubMed
Chen, Y., Evans, J. D., Smith, I. B. and Pettis, J. S. (2008). Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. Journal of Invertebrate Pathology 97, 186188. doi: 10.1016/j.jip.2007.07.010.CrossRefGoogle ScholarPubMed
Chen, Y., Evans, J. D., Zhou, L., Boncristiani, H., Kimura, K., Xiao, T., Litkowski, A. M. and Pettis, J. S. (2009 a). Asymmetrical coexistence of Nosema ceranae and Nosema apis in honey bees. Journal of Invertebrate Pathology 101, 204209. doi: 10.1016/j.jip.2009.05.012.CrossRefGoogle ScholarPubMed
Chen, Y. P., Evans, J. D., Murphy, C., Gutell, R., Zuker, M., Gundensen-Rindal, D. and Pettis, J. S. (2009 b). Morphological, molecular, and phylogenetic characterization of Nosema ceranae, a microsporidian parasite isolated from the European honey bee, Apis mellifera. Journal of Eukaryotic Microbiology 56, 142147. doi: 10.1111/j.1550-7408.2008.00374.x.CrossRefGoogle ScholarPubMed
Cornman, R. S., Chen, Y. P., Schatz, M. C., Street, C., Zhao, Y., Desany, B., Egholm, M., Hutchison, S., Pettis, J. S., Lipkin, W. I. and Evans, J. D. (2009). Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathogens 5, e1000466. doi: 10.1371/journal.ppat.1000466.CrossRefGoogle ScholarPubMed
Cox-Foster, D. L., Conlan, S., Holmes, E. C., Palacios, G., Evans, J. D., Moran, N. A., Quan, P. L., Briese, T., Hornig, M., Geiser, D. M., Martinson, V., vanEngelsdorp, D., Kalkstein, A. L., Drysdale, A., Hui, J., Zhai, J., Cui, L., Hutchison, S. K., Simons, J. F., Egholm, M., Pettis, J. S. and Lipkin, W. I. (2007). A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283287. doi: 10.1126/science.1146498.CrossRefGoogle ScholarPubMed
Crooks, G. E., Hon, G., Chandonia, J. M. and Brenner, S. E. (2004). WebLogo: a sequence logo generator. Genome Research 14, 11881190. doi: 10.1101/gr.849004.CrossRefGoogle ScholarPubMed
Didier, E. S., Vossbrinck, C. R., Baker, M. D., Rogers, L. B., Bertucci, D. C. and Shadduck, J. A. (1995). Identification and characterization of three Encephalitozoon cuniculi strains. Parasitology 111, 411421. doi: 10.1017/S0031182000065914.CrossRefGoogle ScholarPubMed
Dussaubat, C., Brunet, J.-L., Higes, M., Colbourne, J. K., Lopez, J., Choi, J. H., Martín-Hernández, R., Botías, C., Cousin, M., McDonnell, C., Bonnet, M., Belzunces, L. P., Moritz, R. F., Le Conte, Y. and Alaux, C. (2012). Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PLoS ONE 7, e37017. doi: 10.1371/journal.pone.0037017.CrossRefGoogle Scholar
Fay, J. C. and Wu, C. I. (1999). A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear DNA variation. Molecular Biology and Evolution 16, 10031005.CrossRefGoogle ScholarPubMed
Fontbonne, R., Garnery, L., Vidau, C., Aufauvre, J., Texier, C., Tchamitchian, S., El Alaoui, H., Brunet, J. L., Delbac, F. and Biron, D. G. (2013). Comparative susceptibility of three Western honeybee taxa to the microsporidian parasite Nosema ceranae. Infection Genetics and Evolution 17, 188194.CrossRefGoogle Scholar
Fries, I. (2010). Nosema ceranae in European honey bees (Apis mellifera). Journal of Invertebrate Pathology 103, S73S79. doi: 10.1016/j.jip.2009.06.017.CrossRefGoogle ScholarPubMed
Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915925.CrossRefGoogle ScholarPubMed
Gatehouse, H. S. and Malone, L. A. (1998). The ribosomal RNA gene region of Nosema apis (Microspora): DNA sequence for small and large subunit rRNA genes and evidence of a large tandem repeat unit size. Journal of Invertebrate Pathology 71, 97105. doi: 10.1006/jipa.1997.4737.CrossRefGoogle ScholarPubMed
Gisder, S., Hedtke, K., Mockel, N., Frielitz, M. C., Linde, A. and Genersch, E. (2010). Five-year cohort study of Nosema spp. in Germany: does climate shape virulence and assertiveness of Nosema ceranae? Applied and Environmental Microbiology 76, 30323038. doi: 10.1128/AEM.03097-09.CrossRefGoogle ScholarPubMed
Haag, K. L., Traunecker, E. and Ebert, D. (2013). Single-nucleotide polymorphisms of two closely related microsporidian parasites suggest a clonal population expansion after the last glaciation. Molecular Ecology 22, 314326. doi: 10.1111/mec.12126.CrossRefGoogle ScholarPubMed
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Haro, M., Del Aguila, C., Fenoy, S. and Henriques-Gil, N. (2003). Intraspecies genotype variability of the microsporidian parasite Encephalitozoon hellem. Journal of Clinical Microbiology 41, 41664171. doi: 10.1128/JCM.41.9.4166-4171.2003.CrossRefGoogle ScholarPubMed
Hatjina, F., Tsoktouridis, G., Bouga, M., Charistos, L., Evangelou, V., Avtzis, D., Meeus, I., Brunain, M., Smagghe, G. and de Graaf, D. C. (2011). Polar tube protein gene diversity among Nosema ceranae strains derived from a Greek honey bee health study. Journal of Invertebrate Pathology 108, 131134. doi: 10.1016/j.jip.2011.07.003.CrossRefGoogle ScholarPubMed
Higes, M., Martín-Hernández, R. and Meana, A. (2010). Nosema ceranae in Europe: an emergent type C nosemosis. Apidologie 41, 375392. doi: 10.1051/apido/2010019.CrossRefGoogle Scholar
Higes, M., Martin-Hernandez, R., Botias, C., Bailon, E. G., Gonzalez-Porto, A. V., Barrios, L., Del Nozal, M. J., Bernal, J. L., Jimenez, J. J., Palencia, P. G. and Meana, A. (2008). How natural infection by Nosema ceranae causes honeybee colony collapse. Environmental Microbiology 10, 26592669. doi: 10.1111/j.1462-2920.2008.01687.x.CrossRefGoogle ScholarPubMed
Higes, M., Meana, A., Bartolomé, C., Botias, C. and Martin-Hernandez, R. (2013). Nosema ceranae (Microsporidia), a controversial 21st century honey bee pathogen. Environmental Microbiology Reports 5, 1729. doi: 10.1111/1758-2229.12024.CrossRefGoogle ScholarPubMed
Huang, W. F., Bocquet, M., Lee, K. C., Sung, I. H., Jiang, J. H., Chen, Y. W. and Wang, C. H. (2008). The comparison of rDNA spacer regions of Nosema ceranae isolates from different hosts and locations. Journal of Invertebrate Pathology 97, 913. doi: 10.1016/j.jip.2007.07.001.CrossRefGoogle ScholarPubMed
Invernizzi, C., Abud, C., Tomasco, I. H., Harriet, J., Ramallo, G., Campa, J., Katz, H., Gardiol, G. and Mendoza, Y. (2009). Presence of Nosema ceranae in honeybees (Apis mellifera) in Uruguay. Journal of Invertebrate Pathology 101, 150153. doi: 10.1016/j.jip.2009.03.006.CrossRefGoogle ScholarPubMed
Ironside, J. E. (2007). Multiple losses of sex within a single genus of Microsporidia. BMC Evolutionary Biology 7, 48. doi: 10.1186/1471-2148-7-48.CrossRefGoogle ScholarPubMed
Ironside, J. E. (2013) Diversity and recombination of dispersed ribosomal DNA and protein coding genes in Microsporidia. PLoS ONE 8, e55878. doi: 10.1371/journal.pone.0055878.CrossRefGoogle ScholarPubMed
Keeling, P. J. and Fast, N. M. (2002). Microsporidia: biology and evolution of highly reduced intracellular parasites. Annual Review of Microbiology 56, 93116. doi: 10.1146/annurev.micro.56.012302.160854.CrossRefGoogle ScholarPubMed
Klee, J., Besana, A. M., Genersch, E., Gisder, S., Nanetti, A., Tam, D. Q., Chinh, T. X., Puerta, F., Ruz, J. M., Kryger, P., Message, D., Hatjina, F., Korpela, S., Fries, I. and Paxton, R. J. (2007). Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. Journal of Invertebrate Pathology 96, 110. doi: 10.1016/j.jip.2007.02.014.CrossRefGoogle ScholarPubMed
Lee, S. C., Corradi, N., Doan, S., Dietrich, F. S., Keeling, P. J. and Heitman, J. (2010 a). Evolution of the sex-related locus and genomic features shared in microsporidia and fungi. PLoS ONE 5, e10539. doi: 10.1371/journal.pone.0010539.CrossRefGoogle ScholarPubMed
Lee, S. C., Ni, M., Li, W., Shertz, C. and Heitman, J. (2010 b). The evolution of sex: a perspective from the fungal kingdom. Microbiology and Molecular Biology Reviews 74, 298340. doi: 10.1128/MMBR.00005-10.CrossRefGoogle ScholarPubMed
Li, J., Chen, W., Wu, J., Peng, W., An, J., Schmid-Hempel, P. and Schmid-Hempel, R. (2012). Diversity of Nosema associated with bumblebees (Bombus spp.) from China. International Journal for Parasitology 42, 4961. doi: 10.1016/j.ijpara.2011.10.005.CrossRefGoogle ScholarPubMed
Librado, P. and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14511452. doi: 10.1093/bioinformatics/btp187.CrossRefGoogle ScholarPubMed
Martin-Hernandez, R., Meana, A., Prieto, L., Salvador, A. M., Garrido-Bailon, E. and Higes, M. (2007). Outcome of colonization of Apis mellifera by Nosema ceranae. Applied and Environmental Microbiology 73, 63316338. doi: 10.1128/AEM.00270-07.CrossRefGoogle ScholarPubMed
Martin-Hernandez, R., Botias, C., Barrios, L., Martinez-Salvador, A., Meana, A., Mayack, C. and Higes, M. (2011). Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitology Research 109, 605612. doi: 10.1007/s00436-011-2292-9.CrossRefGoogle ScholarPubMed
Martin-Hernandez, R., Botias, C., Bailon, E. G., Martinez-Salvador, A., Prieto, L., Meana, A. and Higes, M. (2012). Microsporidia infecting Apis mellifera: coexistence or competition. Is Nosema ceranae replacing Nosema apis? Environmental Microbiology 14, 21272138. doi: 10.1111/j.1462-2920.2011.02645.x.CrossRefGoogle ScholarPubMed
Mathis, A., Tanner, I., Weber, R. and Deplazes, P. (1999). Genetic and phenotypic intraspecific variation in the microsporidian Encephalitozoon hellem. International Journal for Parasitology 29, 767770. doi: 10.1016/S0020-7519(99)00025-9.CrossRefGoogle ScholarPubMed
Mutinelli, F. (2011). The spread of pathogens through trade in honey bees and their products (including queen bees and semen): overview and recent developments. Revue Scientifique et Technique/Office international des épizooties 30, 257271.Google ScholarPubMed
Nei, M. and Kumar, S. (2000). Molecular Evolution and Phylogenetics. Oxford University Press, New York, NY, USA.CrossRefGoogle Scholar
O'Mahony, E. M., Tay, W. T. and Paxton, R. J. (2007). Multiple rRNA variants in a single spore of the microsporidian Nosema bombi. Journal of Eukaryotic Microbiology 54, 103109. doi: 10.1111/j.1550-7408.2006.00232.x.CrossRefGoogle Scholar
Paxton, R. J., Klee, J., Korpela, S. and Fries, I. (2007). Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38, 558565. doi: 10.1051/apido:2007037.CrossRefGoogle Scholar
Peuvel, I., Delbac, F., Metenier, G., Peyret, P. and Vivares, C. P. (2000). Polymorphism of the gene encoding a major polar tube protein PTP1 in two microsporidia of the genus Encephalitozoon. Parasitology 121, 581587. doi: 10.1017/S0031182000006910.CrossRefGoogle Scholar
Peuvel-Fanget, I., Polonais, V., Brosson, D., Texier, C., Kuhn, L., Peyret, P., Vivarès, C. and Delbac, F. (2006). EnP1 and EnP2, two proteins associated with the Encephalitozoon cuniculi endospore, the chitin-rich inner layer of the microsporidian spore wall. International Journal for Parasitology 36, 309318. doi: 10.1016/j.ijpara.2005.10.005.CrossRefGoogle ScholarPubMed
Pfennig, K. S. (2001). Evolution of pathogen virulence: the role of variation in host phenotype. Proceedings of the Royal Society of London. Series B 268, 755760. doi: 10.1098/rspb.2000.1582.CrossRefGoogle ScholarPubMed
Plischuk, S., Martín-Hernández, R., Prieto, L., Lucía, M., Botías, C., Meana, A., Abrahamovich, A. H., Lange, C. and Higes, M. (2009). South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environmental Microbiology Reports 1, 131135. doi: 10.1111/j.1758-2229.2009.00018.x.CrossRefGoogle ScholarPubMed
Polonais, V., Mazet, M., Wawrzyniak, I., Texier, C., Blot, N., El Alaoui, H. and Delbac, F. (2010). The human microsporidian Encephalitozoon hellem synthesizes two spore wall polymorphic proteins useful for epidemiological studies. Infection and Immunity 78, 22212230. doi: 10.1128/IAI.01225-09.CrossRefGoogle ScholarPubMed
Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O. and Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution 25, 345353. doi: 10.1016/j.tree.2010.01.007.CrossRefGoogle ScholarPubMed
Ramirez-Soriano, A., Ramos-Onsins, S. E., Rozas, J., Calafell, F. and Navarro, A. (2008). Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179, 555567. doi: 10.1534/genetics.107.083006.CrossRefGoogle ScholarPubMed
Ramos-Onsins, S. E. and Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19, 20922100.CrossRefGoogle ScholarPubMed
Rozas, J. (2009). DNA sequence polymorphism analysis using DnaSP. Methods in Molecular Biology 537, 337350. doi: 10.1007/978-1-59745-251-9_17.CrossRefGoogle ScholarPubMed
Rozas, J., Gullaud, M., Blandin, G. and Aguade, M. (2001). DNA variation at the rp49 gene region of Drosophila simulans: evolutionary inferences from an unusual haplotype structure. Genetics 158, 11471155.CrossRefGoogle ScholarPubMed
Sagastume, S., Del Aguila, C., Martin-Hernandez, R., Higes, M. and Henriques-Gil, N. (2011). Polymorphism and recombination for rDNA in the putatively asexual microsporidian Nosema ceranae, a pathogen of honeybees. Environmental Microbiology 13, 8495. doi: 10.1111/j.1462-2920.2010.02311.x.CrossRefGoogle ScholarPubMed
Schwander, T. and Leimar, O. (2011). Genes as leaders and followers in evolution. Trends in Ecology and Evolution 26, 143151. doi: 10.1016/j.tree.2010.12.010.CrossRefGoogle ScholarPubMed
Southern, T. R., Jolly, C. E., Lester, M. E. and Hayman, J. R. (2007). EnP1, a microsporidian spore wall protein that enables spores to adhere to and infect host cells in vitro. Eukaryotic Cell 6, 13541362. doi: 10.1128/EC.00113-07.CrossRefGoogle ScholarPubMed
Tajima, F. (1989). The effect of change in population size on DNA polymorphism. Genetics 123, 597601.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739. doi: 10.1093/molbev/msr121.CrossRefGoogle ScholarPubMed
Tay, W. T., O'Mahony, E. M. and Paxton, R. J. (2005). Complete rRNA gene sequences reveal that the microsporidium Nosema bombi infects diverse bumblebee (Bombus spp.) hosts and contains multiple polymorphic sites. Journal of Eukaryotic Microbiology 52, 505513. doi: 10.1111/j.1550-7408.2005.00057.x.CrossRefGoogle ScholarPubMed
Tellier, A. and Brown, J. K. (2007). Polymorphism in multilocus host parasite coevolutionary interactions. Genetics 177, 17771790. doi: 10.1534/genetics.107.074393.CrossRefGoogle ScholarPubMed
ten Hove, R. J., Van Lieshout, L., Beadsworth, M. B., Perez, M. A., Spee, K., Claas, E. C. and Verweij, J. J. (2009). Characterization of genotypes of Enterocytozoon bieneusi in immunosuppressed and immunocompetent patient groups. Journal of Eukaryotic Microbiology 56, 388393. doi: 10.1111/j.1550-7408.2009.00393.x.CrossRefGoogle ScholarPubMed
Visvesvara, G. S., da Silva, A. J., Croppo, G. P., Pieniazek, N. J., Leitch, G. J., Ferguson, D., de Moura, H., Wallace, S., Slemenda, S. B. and Tyrrell, I. (1995). In vitro culture and serologic and molecular identification of Septata intestinalis isolated from urine of a patient with AIDS. Journal of Clinical Microbiology 33, 930936.CrossRefGoogle ScholarPubMed
Vizoso, D. B. and Ebert, D. (2005). Mixed inoculations of a microsporidian parasite with horizontal and vertical infections. Oecologia 143, 157166. doi: 10.1007/s00442-004-1771-4.CrossRefGoogle ScholarPubMed
Wu, Z., Li, Y., Pan, G., Tan, X., Hu, J., Zhou, Z. and Xiang, Z. (2008). Proteomic analysis of spore wall proteins and identification of two spore wall proteins from Nosema bombycis (Microsporidia). Proteomics 8, 24472461. doi: 10.1002/pmic.200700584.CrossRefGoogle ScholarPubMed
Wu, Z., Li, Y., Pan, G., Zhou, Z. and Xiang, Z. (2009). SWP25, a novel protein associated with the Nosema bombycis endospore. Journal of Eukaryotic Microbiology 56, 113118. doi: 10.1111/j.1550-7408.2008.00375.x.CrossRefGoogle ScholarPubMed
Zander, E. (1909). Tierische Parasiten als Krankenheitserreger bei der Biene. Leipziger Bienenzeitung 24, 147150.Google Scholar
Zheng, D., Alm, E. W., Stahl, D. A. and Raskin, L. (1996). Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Applied and Environmental Microbiology 62, 45044513.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

ROUDEL et al. supplementary material

Supplementary figure

Download ROUDEL et al. supplementary material(PDF)
PDF 426.5 KB