Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T13:59:19.115Z Has data issue: false hasContentIssue false

Nematode neuropeptide receptors and their development as anthelmintic screens

Published online by Cambridge University Press:  29 March 2006

K. GREENWOOD
Affiliation:
Pfizer Animal Health, Ramsgate Road, Sandwich, Kent CT13 9NJ
T. WILLIAMS
Affiliation:
Pfizer Animal Health, Ramsgate Road, Sandwich, Kent CT13 9NJ
T. GEARY
Affiliation:
Institute of Parasitology, McGill University, 21 111 Lakeshore Road, Ste-Anne de Bellevue, H9X 3V9, PQ, Canada

Abstract

This review addresses the potential use of neuropeptide receptors for the discovery of anthelmintic agents, and particularly for the identification of non-peptide ligands. It outlines which nematode neuropeptides are known and have been characterized, the published information on drug discovery around these targets, information about existing high- and low-throughput screening systems and finally the likely safety of neuropeptide mimetics.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BARGMANN, C. I. ( 1998). Neurobiology of the Caenorhabditis elegans genome. Science 282, 20282033.CrossRefGoogle Scholar
BEELEY, N. R. A. ( 2000). Can peptides be mimicked? Drug Discovery Today 5, 354363.Google Scholar
BENYHE, S., FARKAS, J., TOTH, G. & WOLLEMANN, M. ( 1997). Met5-enkephalin-Arg6-Phe7, an endogenous neuropeptide, binds to multiple opioid and nonopioid sites in rat brain. Journal of Neuroscience Research 48, 249258.3.0.CO;2-F>CrossRefGoogle Scholar
BOWMAN, J. W., FRIEDMAN, A. R., THOMPSON, D. P., MAULE, A. G., ALEXANDER-BOWMAN, S. J. & GEARY, T. G. ( 2002). Structure-activity relationships of an inhibitory nematode FMRFamide-related peptide, SDPNFLRFamide (PF1), on Ascaris suum muscle. International Journal for Parasitology 32, 17651771.CrossRefGoogle Scholar
BROWNLEE, D. J. A., HOLDEN-DYE, L., FAIRWEATHER, I. & WALKER, R. J. ( 1995). The action of serotonin and the nematode neuropeptide KSAYMRFamide on the pharyngeal muscle of the nematode Ascaris suum. Parasitology 111, 379384.CrossRefGoogle Scholar
DAVIS, R. E. & STRETTON, A. O. W. ( 1996). The motornervous system of Ascaris: electrophysiology and anatomy of the neurons and their control by neuromodulators. Parasitology 113, S99S117.CrossRefGoogle Scholar
DAVIS, R. E. & STRETTON, A. O. W. ( 2001). Structure-activity relationships of 18 endogenous neuropeptides on the motor nervous system of the nematode Ascaris suum. Peptides 22, 723.CrossRefGoogle Scholar
DAY, T. A. & MAULE, A. G. ( 1999). Parasitic peptides! The structure and function of neuropeptides in parasitic worms. Peptides 20, 9991019.CrossRefGoogle Scholar
DE BONO, M. & BARGMANN, C. I. ( 1998). Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94, 679689.CrossRefGoogle Scholar
DEIGIN, V. I., POMOGAIBO, S. V., ZHUKOVSKII, S. V. & VINOGRADOV, V. A. ( 1988). [A synthetic peptide from Helix aspersa raises arterial pressure in rats.] [Russian]. Zhurnal Evoliutsionnoi Biokhimii i Fiziologii 24, 106108.Google Scholar
DOCKRAY, G. J. ( 2004). The expanding family of –RFamide peptides and their effects on feeding behaviour. Experimental Physiology 89, 229235.CrossRefGoogle Scholar
DOCKRAY, G. J., SAULT, C. & HOLMES, S. ( 1986). Antibodies to FMRF amide, and the related pentapeptide LPLRF amide, reveal two groups of immunoreactive peptides in chicken brain. Regulatory Peptides 16, 2737.CrossRefGoogle Scholar
ELSHOURBAGY, N. A., AMES, R. S., FITZGERALD, L. R., FOLEY, J. J., CHAMBERS, J. K., SZEKERES, P. G., EVANS, N. A., SCHMIDT, D. B., BUCKLEY, P. T., DYTKO, G. M., MURDOCK, P. R., MILLIGAN, G., GROARKE, D. A., TAN, K. B., SHABON, U., NUTHULAGANTI, P., WANG, D. Y., WILSON, S., BERGSMA, D. J. & SARAU, H. M. ( 2000). Receptor for the pain modulatory neuropeptides FF and AF is an orphan G protein-coupled receptor. Journal of Biological Chemistry 275, 2596525971.CrossRefGoogle Scholar
EVANS, B. E., RITTLE, K. E., BOCK, M. G., DIPARDO, R. M., FREIDINGER, R. M., WHITTER, W. L., LUNDELL, G. F., VEBER, D. F., ANDERSON, P. S., CHANG, R. S. L., LOTTI, V. L., CERINO, D. J., CHEN, T. B., KLING, P. J., KUNKEL, K. A., SPRINGER, J. P. & HIRSHFIELD, J. ( 1988). Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. Journal of Medicinal Chemistry 31, 22352246.CrossRefGoogle Scholar
FEHER, E. & BURNSTOCK, G. ( 1989). Occurrence of FMRF amide-like immunoreactive nerve fibers in guinea pig small intestine. Journal of Histochemistry and Cytochemistry 37, 14271433.CrossRefGoogle Scholar
FELLOWES, R. A., MAULE, A. G., MARKS, N. J., GEARY, T. G., THOMPSON, D. P. & HALTON, D. W. ( 2000). Nematode neuropeptide modulation of the vagina vera of Ascaris suum: in vitro effects of PF1, PF2, PF4, AF3 and AF4. Parasitology 120, 7989.CrossRefGoogle Scholar
GARRY, D. J. & SORENSON, R. L. ( 1988). Radioimmunoassay for rat pancreatic alpha-amylase and the effect of Phe-Met-Arg-Phe-amide on amylase secretion in the isolated perfused rat pancreas. Pancreas 3, 551558.CrossRefGoogle Scholar
GEARY, T. G., BOWMAN, J. W., FRIEDMAN, A. R., MAULE, A. G., DAVIS, J. P., WINTERROWD, C. W., KLEIN, R. D. & THOMPSON, D. P. ( 1995). The pharmacology of FMRFamide-related neuropeptides in nematodes: new opportunities for rational anthelmintic discovery? International Journal for Parasitology 25, 12731280.Google Scholar
GEARY, T. G. & KUBIAK, T. M. ( 2005). Neuropeptide G-protein-coupled receptors, their cognate ligands and behavior in Caenorhabditis elegans. Trends in Pharmacological Sciences 26, 5658.CrossRefGoogle Scholar
GEARY, T. G., MARKS, N. J., MAULE, A. G., BOWMAN, J. W., ALEXANDER-BOWMAN, S. J., DAY, T. A., LARSEN, M. J., KUBIAK, T. M., DAVIS, J. P. & THOMPSON, D. P. ( 1999 b). Pharmacology of FMRFamide-related peptides in helminths. Annals of the New York Academy of Sciences 897, 212227.Google Scholar
GEARY, T. G., THOMPSON, D. P. & KLEIN, R. D. ( 1999 a). Mechanism-based screening: discovery of the next generation of anthelmintics depends on more basic research. International Journal for Parasitology 29, 105112.Google Scholar
GIANNIS, A. & KOLTER, T. ( 1993). Peptidomimetics for receptor ligands – discovery, development, and medical perspectives. Angewandte Chemie International Edition (English) 32, 12441267.CrossRefGoogle Scholar
GOUARDERES, C., SUTAK, M., ZAJAC, J. M. & JHAMANDAS, K. ( 1993). Antinociceptive effects of intrathecally administered F8Famide and FMRFamide in the rat. European Journal of Pharmacology 237, 7381.CrossRefGoogle Scholar
HINUMA, S., SHINTANI, Y., FUKUSUMI, S., IIJIMA, Y., HOSOYA, M., FUJII, R., WATANABE, T., KIKUCHI, K., TERAO, Y., YANO, T., YAMAMOTO, T., KAWAMATA, Y., HABATA, Y., ASADA, M., KITADA, C., KUROKAWA, T., ONDA, H., NISHIMURA, O., TANAKA, M., IBATA, Y. & FUJINO, M. ( 2000). New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nature Cell Biology 2, 703708.CrossRefGoogle Scholar
HUANG, E. Y., BAGUST, J., SHARMA, R. P. & WALKER, R. J. ( 1998). The effect of FMRF-amide-like peptides on electrical activity in isolated mammalian spinal cord. Neuroscience Research 30, 295301.CrossRefGoogle Scholar
KAMATH, R. S., FRASER, A. G., DONG, Y., PAULIN, G., DURBIN, R., GOTTA, M., KANAPIN, A., LE bot, N., MORENO, S., SOHRMANN, M., WELCHMAN, D. P., ZIPPERLEN, P. & AHRINGER, J. ( 2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231237.CrossRefGoogle Scholar
KAVALIERS, M. & YANG, H.-Y. ( 1991). Effects of mammalian FMRF-NH2-related peptides and IgG from antiserum against them on aggression and defeat-induced analgesia in mice. Peptides 12, 235239.CrossRefGoogle Scholar
KEATING, C. D., KRIEK, N., DANIELS, M., ASHCROFT, N. R., HOPPER, N. A., SINEY, E. J., HOLDEN-DYE, L. & BURKE, J. F. ( 2003). Whole-genome analysis of 60 G protein-coupled receptors in Caenorhabditis elegans by gene knockout with RNAi. Current Biology 13, 17151720.CrossRefGoogle Scholar
KIM, K. & LI, C. ( 2004). Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. Journal of Comparative Neurology 475, 540550.CrossRefGoogle Scholar
KOMUNIECKI, R. W., HOBSON, R. J., REX, E. B., HAPIAK, V. M. & KOMUNIECKI, P. R. ( 2004). Biogenic amine receptors in parasitic nematodes: what can be learned from Caenorhabditis elegans? Molecular and Biochemical Parasitology 137, 111.Google Scholar
KOTANI, M., MOLLEREAU, C., DETHEUX, M., LE POUL, E., BREZILLON, S., VAKILI, J., MAZARGUIL, H., VASSART, G., ZAJAC, J. M. & PARMENTIER, M. ( 2001). Functional characterization of a human receptor for neuropeptide FF and related peptides. British Journal of Pharmacology 133, 138144.CrossRefGoogle Scholar
KUBBEN, F. J., VAN ASSCHE, C. L. & BOSMAN, F. T. ( 1986). FMRF-amide immunoreactivity in the mammalian gastroenteropancreatic neuroendocrine system. Histochemistry 84, 439444.CrossRefGoogle Scholar
KUBIAK, T. M., LARSEN, M. J., DAVIS, J. P., ZANTELLO, M. R. & BOWMAN, J. W. ( 2003 c). AF2 interaction with Ascaris suum body wall muscle membranes involves G protein activation. Biochemical and Biophysical Research Communications 301, 456459.Google Scholar
KUBIAK, T. M., LARSEN, M. J., NULF, S. C., ZANTELLO, M. R., BURTON, K. J., BOWMAN, J. W., MODRIC, T. & LOWERY, D. E. ( 2003 a). Differential activation of “social” and “solitary” variants of the Caenorhabditis elegans G protein-coupled receptor NPR-1 by its cognate ligand AF9. Journal of Biological Chemistry 278, 3372433729.Google Scholar
KUBIAK, T. M., LARSEN, M. J., ZANTELLO, M. R., BOWMAN, J. W., NULF, S. C. & LOWERY, D. E. ( 2003 b). Functional annotation of the putative orphan Caenorhabditis elegans G protein-coupled receptor C10C6.2 as a FLP15 peptide receptor. Journal of Biological Chemistry 278, 4211542120.Google Scholar
KURODA, S., NAKAGAWA, N., TOKUNAGA, C., TATEMATSU, K. & TANIZAWA, K. ( 1999). Mammalian homologue of the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth is a protein kinase C zeta-interacting protein. Journal of Cell Biology 144, 403411.CrossRefGoogle Scholar
LABROUCHE, S., LAULIN, J. P., LEMOAL, M., TRAMU, G. & SIMONNET, G. ( 1998). Neuropeptide FF in the rat adrenal gland – presence, distribution and pharmacological effects. Journal of Neuroendocrinology 10, 559565.CrossRefGoogle Scholar
LANGE, A. B., ORCHARD, I., WANG, Z. & NACHMAN, R. J. ( 1995). A nonpeptide agonist of the invertebrate receptor for SchistoFLRFamide (PDVDHVFLRFamide), a member of a subfamily of insect FMRFamide-related peptides. Proceedings of the National Academy of Sciences, USA 92, 92509253.CrossRefGoogle Scholar
LEE, B. H., DUTTON, F. E., CLOTHIER, M. C., BOWMAN, J. W., DAVIS, J. P., JOHNSON, S. S., THOMAS, E. M., ZANTELLO, M. R., ZINSER, E. W., MCGUIRE, J. C., THOMPSON, D. P. & GEARY, T. G. ( 1999). Synthesis and biological activity of anthelmintic thiadiazoles using an AF-2 receptor binding assay. Bioorganic and Medicinal Chemistry Letters 9, 17271732.CrossRefGoogle Scholar
LORD, J. A. H., WATERFIELD, A. A., HUGHES, J. & KOSTERLITZ, H. W. ( 1977). Endogenous opioid peptides: multiple agonists and receptors. Nature 267, 495499.CrossRefGoogle Scholar
LOWERY, D. E., GEARY, T. G., KUBIAK, T. M. & LARSEN, M. J. ( 2003). G protein-coupled receptors and modulators thereof. US Patent No. 6,632,621.
MAJANE, E. A., CASANOVA, M. F. & YANG, H.-Y. ( 1988). Biochemical characterization of FMRF-NH2-like peptides in spinal cords of various mammalian species using specific radioimmunoassay. Peptides 9, 11371144.CrossRefGoogle Scholar
MALIN, D. H., LAKE, J. R., HAMMOND, M. V., FOWLER, D. E., ROGILLIO, R. B., BROWN, S. L., SIMS, J. L., LEECRAFT, B. M. & YANG, H.-Y. ( 1990). FMRF-NH2-like mammalian octapeptide: possible role in opiate dependence and abstinence. Peptides 11, 969972.CrossRefGoogle Scholar
MARKS, N. J., MAULE, A. G., HALTON, D. W., GEARY, T. G., SHAW, C. & THOMPSON, D. P. ( 1997). Pharmacological effects of nematode FMRFamide-related peptides (FaRPs) on muscle contractibility of the nematode Fasciola hepatica. Parasitology 114, 531539.Google Scholar
MARKS, N. J., MAULE, A. G., LI, C., NELSON, L. S., THOMPSON, D. P., ALEXANDER-BOWMAN, S., GEARY, T. G., HALTON, D. W., VERHAERT, P. & SHAW, C. ( 1999 a). Isolation, pharmacology and gene organization of KPSFVRFamide: a neuropeptide from Caenorhabditis elegans. Biochemical and Biophysical Research Communications 254, 222230.Google Scholar
MARKS, N. J., SANGSTER, N. C., MAULE, A. G., HALTON, D. W., THOMPSON, D. P., GEARY, T. G. & SHAW, C. ( 1999 b). Structural characterisation and pharmacology of KHEYLRFamide (AF2) and KSAYMRFamide (PF3/AF8) from Haemonchus contortus. Molecular and Biochemical Parasitology 100, 185194.Google Scholar
MAULE, A. G., BOWMAN, J. W., THOMPSON, D. P., MARKS, N. J., FRIEDMAN, A. R. & GEARY, T. G. ( 1996). FMRFamide-related peptides (FaRPs) in nematodes. Occurrence and neuromuscular physiology. Parasitology 113, S119S135.Google Scholar
MAULE, A. G., GEARY, T. G., BOWMAN, J. W., MARKS, N. J., BLAIR, K. L., HALTON, D. W., SHAW, C. & THOMPSON, D. P. ( 1995). Inhibitory effects of nematode FMRFamide-related peptides (FaRPs) on muscle strips from A. suum. Invertebrate Neurosciences 1, 255265.CrossRefGoogle Scholar
MAULE, A. G., MOUSLEY, A., MARKS, N. J., DAY, T. A., THOMPSON, D. P., GEARY, T. G. & HALTON, D. W. ( 2002). Neuropeptide signaling systems – potential targets for parasite and pest control. Current Topics in Medicinal Chemistry 2, 733758.CrossRefGoogle Scholar
MERTENS, I., VANDINGENEN, A., MEEUSEN, T., JANSSEN, T., LUYTEN, W., NACHMAN, R. J., DE LOOF, A. & SCHOOFS, L. ( 2004). Functional characterization of the putative orphan neuropeptide G protein-coupled receptor C26F1.6 in Caenorhabditis elegans. FEBS Letters 573, 5560.Google Scholar
MOUSLEY, A., MARKS, N. J., HALTON, D. W., GEARY, T. G., THOMPSON, D. P. & MAULE, A. G. ( 2004 b). Arthropod FMRFamide-related peptides modulate muscle activity in helminths. International Journal for Parasitology 34, 755768.Google Scholar
MOUSLEY, A., MARKS, N. J. & MAULE, A. G. ( 2004 a). Neuropeptide signaling: a repository of targets for novel endectocides? Trends in Parasitology 20, 482487.Google Scholar
NACHMAN, R. J., OLENDER, E. H., ROBERTS, V. A., HOLMAN, G. M. & YAMAMOTO, D. ( 1996). A nonpeptidal peptidomimetic agonist of the insect FLRFamide myosuppressin family. Peptides 17, 313320.CrossRefGoogle Scholar
NACHMAN, R. J., VERCAMMEN, T., WILLIAMS, H., KACZMAREK, K., ZABROCKI, J. & SCHOOFS, L. ( 2005). Aliphatic amino diacid Asu functions as an effective mimic of Tyr(SO3H) in sulfakinins for myotropic food intake-inhibition activity in insects. Peptides 26, 115120.CrossRefGoogle Scholar
NATHOO, A. N., MOELLER, R. A., WESTLUND, B. A. & HART, A. C. ( 2001). Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proceedings of the National Academy of Sciences, USA 98, 1400014005.CrossRefGoogle Scholar
OLDE, B. & MCCOMBIE, W. R. ( 1997). Molecular cloning and functional expression of a serotonin receptor from Caenorhabditis elegans. Journal of Molecular Neuroscience 8, 5362.CrossRefGoogle Scholar
PANULA, P., AARNISALO, A. A. & WASOWICZ, K. ( 1996). Neuropeptide FF, a mammalian neuropeptide with multiple functions. Progress in Neurobiology 48, 461487.CrossRefGoogle Scholar
PERRY, S. J., YI-KUNG, H. E., CRONK, D., BAGUST, J., SHARMA, R., WALKER, R. J., WILSON, S. & BURKE, J. F. ( 1997). A human gene encoding morphine modulating peptides related to NPFF and FMRFamide. FEBS Letters 409, 426430.CrossRefGoogle Scholar
PETTIBONE, D. J. & FREIDINGER, R. M. ( 1997). Discovery and development of non-peptide antagonists of peptide hormone receptors. Biochemical Society Transactions 25, 10511057.CrossRefGoogle Scholar
PITTAWAY, K. M., RODRIGUEZ, R. E., HUGHES, J. & HILL, R. G. ( 1987). CCK 8 analgesia and hyperalgesia after intrathecal administration in the rat: comparison with CCK-related peptides. Neuropeptides 10, 87108.CrossRefGoogle Scholar
RAFFA, R. B. ( 1991). The actions of FMRF-NH2 and FMRF-NH2 related peptides on mammals. NIDA Research Monograph 105, 243249.Google Scholar
REINITZ, C. A., HERFEL, H. G., MESSINGER, L. A. & STRETTON, A. O. W. ( 2000). Changes in locomotory behaviour and cAMP produced in Ascaris suum by neuropeptides from Ascaris suum or Caenorhabditis elegans. Molecular and Biochemical Parasitology 111, 185197.CrossRefGoogle Scholar
ROBERT, J. J., OROSCO, M., ROUCH, C., JACQUOT, C. & COHEN, Y. ( 1989). Unexpected responses of the obese “cafeteria” rat to the peptide FMRF-amide. Pharmacology, Biochemistry and Behavior 34, 341344.CrossRefGoogle Scholar
ROGERS, C., REALE, V., KIM, K., CHATWIN, H., LI, C., EVANS, P. & DE BONO, M. ( 2003). Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nature Neuroscience 6, 11781185.CrossRefGoogle Scholar
ROTH, B. L., DISIMONE, J., MAJANE, E. A. & YANG, H.-Y. ( 1987). Elevation of arterial pressure in rats by two new vertebrate peptides FLFQPQRF-NH2 and AGEGLSSPFWSLAAPQRF-NH2 which are immunoreactive to FMRF-NH2 antiserum. Neuropeptides 10, 3742.CrossRefGoogle Scholar
SANGSTER, N. C. ( 2001). Managing parasiticide resistance. Veterinary Parasitology 98, 89109.CrossRefGoogle Scholar
SORENSON, R. L., SASEK, C. A. & ELDE, R. P. ( 1984). Phe-met-arg-phe-amide (FMRF-NH2) inhibits insulin and somatostatin secretion and anti-FMRF-NH2 sera detects pancreatic polypeptide cells in the rat islet. Peptides 5, 777782.CrossRefGoogle Scholar
STABLES, J., GREEN, A., MARSHALL, F., FRASER, N., KNIGHT, E., SAUTEL, M., MILLIGAN, G., LEE, M. & REES, S. ( 1997). A bioluminescent assay for agonist activity at potentially any G-protein-coupled receptor. Analytical Biochemistry 252, 115126.CrossRefGoogle Scholar
TANG, J., YANG, H.-Y. & COSTA, E. ( 1984). Inhibition of spontaneous and opiate-modified nociception by an endogenous neuropeptide with Phe-Met-Arg-Phe-NH2-like immunoreactivity. Proceedings of the National Academy of Sciences, USA 81, 50025005.CrossRefGoogle Scholar
THIEMERMANN, C., AL-DAMLUJI, S., HECKER, M. & VANE, J. R. ( 1991). FMRF-amide and L-Arg-L-Phe increase blood pressure and heart rate in the anaesthetised rat by central stimulation of the sympathetic nervous system. Biochemical and Biophysical Research Communications 175, 318324.CrossRefGoogle Scholar
TRIM, N., BOWMAN, J. E., HOLDEN-DYE, L. & WALKER, R. J. ( 1998). The role of cAMP in the action of the peptide AF3 in the parasitic nematodes Ascaris suum and Ascaridia galli. Molecular and Biochemical Parasitology 93, 236271.CrossRefGoogle Scholar
TRIM, N., HOLDEN-DYE, L., RUDDELL, R. & WALKER, R. J. ( 1997). The effects of the peptides AF3 (AVPGVLRFamide) and AF4 (GDVPGVLRFamide) on the somatic muscle of the parasitic nematodes Ascaris suum and Ascaridia galli. Parasitology 15, 213222.CrossRefGoogle Scholar
UKENA, K. & TSUTSUI, K. ( 2001). Distribution of novel RFamide-related peptide-like immunoreactivity in the mouse central nervous system. Neuroscience Letters 300, 153156.CrossRefGoogle Scholar
YANG, H.-Y., FRATTA, W., MAJANE, E. A. & COSTA, E. ( 1985). Isolation, sequencing, synthesis, and pharmacological characterization of two brain neuropeptides that modulate the action of morphine. Proceedings of the National Academy of Sciences, USA 82, 77577761.CrossRefGoogle Scholar
YANG, H. Y. T. & IADAROLA, M. J. ( 2003). Activation of spinal neuropeptide FF and the neuropeptide FF receptor 2 during inflammatory hyperalgesia in rats. Neuroscience 118, 179187.CrossRefGoogle Scholar
ZADINA, J. E. & KASTIN, A. J. ( 1986). Interactions of Tyr-MIF-1 at opiate receptor sites. Pharmacology, Biochemistry and Behavior 25, 13031305.CrossRefGoogle Scholar