Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T17:04:33.914Z Has data issue: false hasContentIssue false

Naturally occurring immunoglobulin Mantibodies to Toxoplasma gondii in Japanese populations

Published online by Cambridge University Press:  06 April 2009

E. Konishi
Affiliation:
Department of Medical Zoology, Kobe University School of Medicine, Kobe 650, Japan

Summary

Varying degrees of naturally occurring immunoglobulin (Ig) M antibodies to Toxoplasma gondii were observed in almost all of adult Japanese populations negative for IgG antibodies as determined by an enzyme-linked immunosorbent assay (ELISA). The antibody activity was reduced by absorption of sera with Toxoplasma soluble antigen or by 2-mercapto-ethanol treatment of the IgM fraction after sucrose density gradient centrifugation. Umbilical cord sera had almost no detectable IgM antibodies, and the ELISA value in infants increased with age until 1 year. Most paired sera collected from adults at a 1-year interval showed constant IgM antibody levels, suggesting retention of natural IgM antibodies throughout their lives without changing ELISA values of ≥ 0·1/year. Polar staining was observed in immunofluorescent studies for 14 serum samples with natural IgM antibody levels of ≥ 0·5, while samples obtained from a pregnant woman with natural IgM antibody levels of ≥ 0·9 reacted to the whole organism as was observed in positive sera of acute patients. Western blotting analysis revealed that natural IgM antibodies were directed to multiple antigen molecules. The band pattern differed slightly from one serum to another, but almost consistent patterns were observed in sera sequentially obtained from an adult over 4 years.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Araujo, F. G., Barnett, E. V., Gentry, L. O. & Remington, J. S. (1971). False-positive anti-Toxoplasma fluorescent-antibody tests in patients with antinuclear antibodies. Applied Microbiology 22, 270–5.CrossRefGoogle ScholarPubMed
Bickel, Y. B., Barnett, E. V. & Pearson, C. M. (1968). Immunofluorescent patterns and specificity of human antinuclear antibodies. Clinical and Experimental Immunology 3, 641–56.Google Scholar
Camargo, M. E., Leser, P. G. & Rocca, A. (1972). Rheumatoid factors as a cause for false positive IgM anti-Toxoplasma fluorescent tests. A technique for specific results. Revista do Instituto de Medicina Tropical de Sao Paulo 14, 310–13.Google Scholar
Caul, E. O., Smyth, G. W. & Clarke, S. K. R. (1974). A simplified method for the detection of rubella-specific IgM employing sucrose density fractionation and 2-mercaptoethanol. Journal of Hygiene 73, 329–40.Google Scholar
De Meuter, F. & De Decker, H. (1975). Indirect fluorescent antibody test in toxoplasmosis: advantage of the use of fluorescent anti-IgG conjugate. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. 1 Abt. Originale Reihe A 233, 421–30.Google Scholar
Desmonts, G., Baufine-Ducrocq, H., Couzineau, P. & Peloux, Y. (1974). Anticorps toxoplasmiques naturels. Nouvelle Presse Medicale 3, 1547–9.Google Scholar
Franco, E. L., Sulzer, A. J., Higby, R. W. & Peralta, J. M. (1980). Immunoglobulin G and M polar staining of Toxoplasma gondii in the indirect immunofluorescence test. Journal of Clinical Microbiology 12, 780–4.CrossRefGoogle Scholar
Fulton, J. D. (1965). Studies on agglutination of Toxoplasma gondii. Transactions of the Royal Society of Tropical Medicine and Hygene 59, 694704.Google Scholar
Fulton, J. D. & Fulton, F. (1965). Complement-fixation tests in toxoplasmosis with purified antigen. Nature, London 205, 776–8.Google Scholar
Fulton, J. D. & Turk, J. L. (1959). Direct agglutination test for Toxoplasma gondii. Lancet 2, 1068–9.CrossRefGoogle ScholarPubMed
Gussetti, N., D'elia, R., Rigoli, E. & Mottola, A. (1990). Natural immunoglobulin M antibodies against Toxoplasma gondii during pregnancy. American Journal of Obstetrics and Gynecology 162, 1360.Google Scholar
Hobbs, K. M., Sole, E. & Bettelheim, K. A. (1977). Investigation into the immunoglobulin class responsible for the polar staining of Toxoplasma gondii in the fluorescent antibody test. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. 1 Abt. Originale Reihe A 239, 409–13.Google Scholar
Konishi, E. (1987). A pregnant woman with a high level of naturally occurring immunoglobulin M antibodies to Toxoplasma gondii. American Journal of Obstetrics and Gynecology 157, 832–3.Google Scholar
Konishi, E. (1989). Annual change in immunoglobulin G and M antibody levels to Toxoplasma gondii in human sera. Microbiology and Immunology 33, 403–11.Google Scholar
Konishi, E. & Takahashi, J. (1983). Reproducible enzyme-linked immunosorbent assay with a magnetic processing system for diagnosis of toxoplasmosis. Journal of Clinical Microbiology 17, 225–31.CrossRefGoogle ScholarPubMed
Konishi, E. & Takahashi, J. (1987). Some epidemiological aspects of Toxoplasma infections in a population of farmers in Japan. International Journal of Epidemiology 16, 277–81.Google Scholar
Konishi, E., Takahashi, J., Soeripto, N., Kabir, A. & Matsumura, T. (1987). Prevalence of antibody to Toxoplasma gondii among pregnant women and umbilical cords in Hyogo Prefecture, Japan. Japanese Journal of Parasitology 36, 198200.Google Scholar
Konishi, E. & Yamanishi, H. (1984). Estimation of blood meal size of Aedes albopictus (Diptera: Culicidae) using enzyme-linked immunosorbent assay. Journal of Medical Entomology 21, 506–13.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Naot, Y., Barnett, E. V. & Remington, J. S. (1981). Method for avoiding false-positive results occurring in immunoglobulin M enzyme-linked immunosorbent assays due to presence of both rheumatoid factor and antinuclear antibodies. Journal of Clinical Microbiology 14, 73–8.CrossRefGoogle ScholarPubMed
Potasman, I., Araujo, F. G. & Remington, J. S. (1986). Toxoplasma antigens recognized by naturally occurring human antibodies. Journal of Clinical Microbiology 24, 1050–4.Google Scholar
Remington, J. S. & Desmonts, G. (1982). Toxoplasmosis. In Infectious Diseases of the Fetus and Newborn Infant, 2nd Edn. (ed. Remington, J. S. & Klein, J. O.), pp. 143263. Philadelphia: W. B. Saunders Co.Google Scholar
Sulzer, A. J. & Hall, E. C. (1967). Indirect fluorescent antibody tests for parasitic diseases. IV. Statistical study of variation in the indirect fluorescent antibody (IFA) test for toxoplasmosis. American Journal of Epidemiology 86, 401–7.Google Scholar
Sulzer, A. J., Wilson, M. & Hall, E. C. (1971). Toxoplasma gondii: polar staining in fluorescent antibody test. Experimental Parasitology 29, 197200.Google Scholar
Takahashi, J. & Konishi, E. (1986). Quantitation of antibodies to Toxoplasma gondii in swine sera by enzyme-linked immunosorbent assay. Journal of Immunoassay 7, 257–72.CrossRefGoogle ScholarPubMed
Takahashi, J., Konishi, E. & Matsumura, T. (1985). A survey of antibody to Toxoplasma gondii among patients of a hospital in Hyogo Prefecture, Japan, by enzyme-linked immunosorbent assay. Japanese Journal of Parasitology 34, 8792.Google Scholar
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350–4.Google Scholar
Van Renterghem, L. & Van Nimmen, L. (1976). Indirect immunofluorescence in toxoplasmosis: frequency, nature and specificity of polar staining. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. 1 Abt. Originale Reihe A 235, 559–65.Google ScholarPubMed