Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T06:28:54.111Z Has data issue: false hasContentIssue false

The natural absence of RPA1N domain did not impair Leishmania amazonensis RPA-1 participation in DNA damage response and telomere protection

Published online by Cambridge University Press:  07 February 2013

RITA DE CÁSSIA VIVEIROS DA SILVEIRA
Affiliation:
Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, 18618-970, Brazil
MARCELO SANTOS DA SILVA
Affiliation:
Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, 18618-970, Brazil
VINÍCIUS SANTANA NUNES
Affiliation:
Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, 18618-970, Brazil
ARINA MARINA PEREZ
Affiliation:
Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, 18618-970, Brazil
MARIA ISABEL NOGUEIRA CANO*
Affiliation:
Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, 18618-970, Brazil
*
*Corresponding author. E-mail: [email protected]

Summary

We have previously shown that the subunit 1 of Leishmania amazonensis RPA (LaRPA-1) alone binds the G-rich telomeric strand and is structurally different from other RPA-1. It is analogous to telomere end-binding proteins described in model eukaryotes whose homologues were not identified in the protozoan´s genome. Here we show that LaRPA-1 is involved with damage response and telomere protection although it lacks the RPA1N domain involved with the binding with multiple checkpoint proteins. We induced DNA double-strand breaks (DSBs) in Leishmania using phleomycin. Damage was confirmed by TUNEL-positive nuclei and triggered a G1/S cell cycle arrest that was accompanied by nuclear accumulation of LaRPA-1 and RAD51 in the S phase of hydroxyurea-synchronized parasites. DSBs also increased the levels of RAD51 in non-synchronized parasites and of LaRPA-1 and RAD51 in the S phase of synchronized cells. More LaRPA-1 appeared immunoprecipitating telomeres in vivo and associated in a complex containing RAD51, although this interaction needs more investigation. RAD51 apparently co-localized with few telomeric clusters but it did not immunoprecipitate telomeric DNA. These findings suggest that LaRPA-1 and RAD51 work together in response to DNA DSBs and at telomeres, upon damage, LaRPA-1 works probably to prevent loss of single-stranded DNA and to assume a capping function.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrientos, K. S., Kendellen, M. F., Freibaum, B. D., Armbruster, B. N., Etheridge, K. T. and Counter, C. M. (2008). Distinct functions of POT1 at telomeres. Molecular and Cellular Biology 28, 52515264. doi: 10.1128/MCB.00048-08.CrossRefGoogle ScholarPubMed
Belenguer, P., Oustrin, M. L., Tiraby, G. and Ducommun, B. (1995). Effects of phleomycin-induced DNA damage on the fission yeast Schizosaccharomyces pombe cell cycle. Yeast 11, 225231. doi: 10.1002/yea.320110305.CrossRefGoogle ScholarPubMed
Berman, J. (2005). Recent developments in leishmaniasis: epidemiology, diagnosis, and treatment. Current Infectious Disease Reports 7, 3338. doi: 10.1007/s11908-005-0021-1.CrossRefGoogle ScholarPubMed
Beverley, S. M. (1991). Gene amplification in Leishmania. Annual Review of Microbiology 45, 417444.doi: 10.1146/annurev.mi.45.100191.002221.CrossRefGoogle ScholarPubMed
Beverley, S. M., Ellenberger, T. E. and Cordingley, J. S. (1986). Primary structure of the gene encoding the bifunctional dihydrofolate reductase-thymidylate synthase of Leishmania major. Proceedings of the National Academy of Sciences, USA 83, 25842588. doi: 10.1073/pnas.83.8.2584.CrossRefGoogle ScholarPubMed
Brown, L. M., Melendy, T. and Ray, D. S. (1992). Conservation of structure and function of DNA replication protein A in the trypanosomatid Crithidia fasciculata. Proceedings of the National Academy of Sciences, USA 89, 1022710231. doi: 10.1073/pnas.89.21.10227.CrossRefGoogle ScholarPubMed
da Silva, M. S., Perez, A. M., da Silveira, R. C., de Moraes, C. E., Siqueira-Neto, J. L., Freitas-Jr, L. H. and Cano, M. I. N. (2010). The Leishmania amazonensis TRF (TTAGGG repeat-binding factor) homologue binds and co-localizes with telomeres. BioMed Central Microbiology 10, 136. doi: 10.1186/1471–2180-10-136.Google ScholarPubMed
de Lange, T. (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes & Development 19, 21002110. doi: 10.1101/gad.1346005.CrossRefGoogle ScholarPubMed
Deng, X., Habel, J. E., Kabaleeswaran, V., Snell, E. H., Wold, M. S. and Borgstahl, G. E. (2007). Structure of the full-length human RPA14/32 complex gives insights into the mechanism of DNA binding and complex formation. Journal of Molecular Biology 374, 865876. doi: 10.1016/j.jmb.2007.09.074.CrossRefGoogle ScholarPubMed
Dodson, G. E., Shi, Y. and Tibbetts, R. S. (2004). DNA replication defects, spontaneous DNA damage, and ATM-dependent checkpoint activation in replication protein A-deficient cells. Journal of Biological Chemistry 279, 3401034014. doi: 10.1074/jbc.C400242200.CrossRefGoogle ScholarPubMed
Dossin, F. de M., Dufour, A., Dusch, E., Siqueira-Neto, J. L., Moraes, C. B., Yang, G. S., Cano, M. I. N., Genovesio, A. and Freitas-Junior, L. H. (2008). Automated nuclear analysis of Leishmania major telomeric clusters reveals changes in their organization during the parasite's life cycle. Public Library of Science One 3, e2313. doi: 10.1371/journal.pone.0002313.Google ScholarPubMed
Featherstone, C. and Jackson, S. P. (1999). DNA double-strand break repair. Current Biology 9, R759R761. doi: 10.1371/journal.pone.0002313.CrossRefGoogle ScholarPubMed
Fernandez, M. F., Castellari, R. R., Conte, F. F., Gozzo, F. C., Sabino, A. A., Pinheiro, H., Novello, J. C., Eberlin, M. N. and Cano, M. I. N. (2004). Identification of three proteins that associate in vitro with the Leishmania (Leishmania) amazonensis G-rich telomeric strand. European Journal of Biochemistry 271, 30503063. doi: 10.1111/j.1432-1033.2004.04237.x.CrossRefGoogle ScholarPubMed
Fragaki, K., Ferrua, B., Mograbi, B., Waldispuhl, J. and Kubar, J. (2003). A novel Leishmania infantum nuclear phosphoprotein Lepp12 which stimulates IL1-beta synthesis in THP-1 transfectants. BioMed Central Microbiology 3, 7. doi: 10.1186/1471-2180-3-7.Google ScholarPubMed
Freedman, D. J. and Beverley, S. M. (1993). Two more independent selectable markers for stable transfection of Leishmania. Molecular and Biochemical Parasitology 62, 3744. doi: :10.1016/0166-6851(93)90175-W.CrossRefGoogle ScholarPubMed
Gao, H., Cervantes, R. B., Mandell, E. K., Otero, J. H. and Lundblad, V. (2007). RPA-like proteins mediate yeast telomere function. Nature Structural & Molecular Biology 14, 208214. doi: 10.1038/nsmb1205.CrossRefGoogle ScholarPubMed
Gasior, S. L., Olivares, H., Ear, U., Hari, D. M., Weichselbaum, R. and Bishop, D. K. (2001). Assembly of RecA-like recombinases: distinct roles for mediator proteins in mitosis and meiosis. Proceedings of the National Academy of Sciences, USA 98, 84118418. doi: 10.1073/pnas.121046198.CrossRefGoogle ScholarPubMed
Genois, M-M., Mukherjee, A., Ubeda, J. M., Buisson, R., Paquet, E., Roy, G., Plourde, M., Coulombe, Y., Ouellette, M. and Masson, J. Y. (2012). Interactions between BRCA2 and RAD51 for promoting homologous recombination in Leishmania infantum. Nucleic Acids Research 40, 65706584. doi: 10.1093/nar/gks306.CrossRefGoogle ScholarPubMed
Glover, L. and Horn, D. (2012). Trypanosomal histone gammaH2A and the DNA damage response. Molecular and Biochemical Parasitology 183, 7883. doi: 10.1016/j.molbiopara.2012.01.008.CrossRefGoogle ScholarPubMed
Glover, L., McCulloch, R. and Horn, D. (2008). Sequence homology and microhomology dominate chromosomal double-strand break repair in African trypanosomes. Nucleic Acids Research 36, 26082618. doi: 10.1093/nar/gkn104.CrossRefGoogle ScholarPubMed
Golub, E. I., Gupta, R. C., Haaf, T., Wold, M. S. and Radding, C. M. (1998). Interaction of human rad51 recombination protein with single-stranded DNA binding protein, RPA. Nucleic Acids Research 26, 53885393. doi: 10.1093/nar/26.23.5388.CrossRefGoogle ScholarPubMed
Grogl, M., Oduola, A. M., Cordero, L. D. and Kyle, D. E. (1989). Leishmania spp.: development of pentostam-resistant clones in vitro by discontinuous drug exposure. Experimental Parasitology 69, 7890. doi: 10.1016/0014-4894(89)90173-2.CrossRefGoogle ScholarPubMed
Grudic, A., Jul-Larsen, A., Haring, S. J., Wold, M. S., Lonning, P. E., Bjerkvig, R. and Boe, S. O. (2007). Replication protein A prevents accumulation of single-stranded telomeric DNA in cells that use alternative lengthening of telomeres. Nucleic Acids Research 35, 72677278. doi: 10.1093/nar/gkm738.CrossRefGoogle ScholarPubMed
Haring, S. J. and Wold, M. S. (2007). A common means to an end. Nature Structural & Molecular Biology 14, 176177. doi: 10.1038/nsmb0307-176.CrossRefGoogle ScholarPubMed
Kalocsay, M., Hiller, N. J. and Jentsch, S. (2009). Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Molecular Cell 33, 335343. doi: 10.1016/j.molcel.2009.01.016.CrossRefGoogle ScholarPubMed
Khadaroo, B., Teixeira, M. T., Luciano, P., Ecker-Boulet, N., Germann, S. M., Simon, M. N., Gallina, I., Abadallah, P., Gilson, E., Geli, V. and Lisby, M. (2009). The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nature Cell Biology 11, 980987. doi: 10.1038/ncb1910.CrossRefGoogle Scholar
Lao, Y., Gomes, X. V., Ren, Y., Taylor, J. S. and Wold, M. S. (2000). Replication protein A interactions with DNA. III. Molecular basis of recognition of damaged DNA. Biochemistry 39, 850859. doi: 10.1021/bi991704s.CrossRefGoogle ScholarPubMed
Lira, C. B., Giardini, M. A., Siqueira-Neto, J. L., Conte, F. F. and Cano, M. I. N. (2007). Telomere biology of trypanosomatids: beginning to answer some questions. Trends in Parasitology 23, 357362. doi: 10.1016/j.pt.2007.06.005.CrossRefGoogle ScholarPubMed
Lisby, M., Teixeira, M. T., Gilson, E. and Geli, V. (2010). The fate of irreparable DNA double-strand breaks and eroded telomeres at the nuclear periphery. Nucleus 1, 158161. doi: 10.4161/nucl.1.2.11173.CrossRefGoogle ScholarPubMed
Longhese, M. P. (2008). DNA damage response at functional and dysfunctional telomeres. Genes & Development 22, 125140. doi: 10.1101/gad.1626908.CrossRefGoogle ScholarPubMed
McCulloch, R. and Barry, J. D. (1999). A role for RAD51 and homologous recombination in Trypanosoma brucei antigenic variation. Genes & Development, 13, 28752888. doi: 10.1101/gad.13.21.2875.CrossRefGoogle ScholarPubMed
McKean, P. G., Keen, J. K., Smith, D. F. and Benson, F. E. (2001). Identification and characterisation of a RAD51 gene from Leishmania major. Molecular and Biochemical Parasitology 115, 209216. doi: 10.1016/S0166-6851(01)00288-2.CrossRefGoogle ScholarPubMed
Moore, C. W. (1988). Internucleosomal cleavage and chromosomal degradation by bleomycin and phleomycin in yeast. Cancer Research 48, 68376843.Google ScholarPubMed
Moore, C. W. (1989). Cleavage of cellular and extracellular Saccharomyces cerevisiae DNA by bleomycin and phleomycin. Cancer Research 49, 69356940.Google ScholarPubMed
Nakada, D., Shimomura, T., Matsumoto, K. and Sugimoto, K. (2003). The ATM-related Tel1 protein of Saccharomyces cerevisiae controls a checkpoint response following phleomycin treatment. Nucleic Acids Research 31, 17151724. doi: 10.1093/nar/gkg252.CrossRefGoogle ScholarPubMed
Ouellete, M., Drummelsmith, J. and Papadopoulou, B. (2004). Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resistance Updates 7, 257266. doi: 10.1016/j.bbrc.2007.04.144.CrossRefGoogle Scholar
Paland, N., Kamer, I., Kogan-Sakin, I., Madar, S., Goldfinger, N. and Rotter, V. (2009). Differential influence of normal and cancer-associated fibroblasts on the growth of human epithelial cells in an in vitro cocultivation model of prostate cancer. Molecular Cancer Research 7, 12121223. doi: 10.1158/1541-7786.MCR-09-0073.CrossRefGoogle Scholar
Patrick, S. M. and Turchi, J. J. (1999). Replication protein A (RPA) binding to duplex cisplatin-damaged DNA is mediated through the generation of single-stranded DNA. Journal of Biological Chemistry 274, 1497214978. doi: 10.1074/jbc.274.21.14972.CrossRefGoogle ScholarPubMed
Povirk, L. F., Han, Y. H. and Steighner, R. J. (1989). Structure of bleomycin-induced DNA double-strand breaks: predominance of blunt ends and single-base 5′ extensions. Biochemistry 28, 58085814.CrossRefGoogle ScholarPubMed
Regis-da-Silva, C. G., Freitas, J. M., Passos-Silva, D. G., Furtado, C., Augusto-Pinto, L., Pereira, M. T., DaRocha, W. D., Franco, G. R., Macedo, A. M., Hoffmann, J. S., Cazaux, C., Pena, S. D. J., Teixeira, S. M. R. and Machado, C. R. (2006) Characterization of the Trypanosoma cruzi Rad51 gene and its role in recombination events associated with the parasite resistance to ionizing radiation. Molecular and Biochemical Parasitology 149, 191200. doi: 10.1016/j.molbiopara.2006.05.012.CrossRefGoogle ScholarPubMed
Schramke, V., Luciano, P., Brevet, V., Guillot, S., Corda, Y., Longhese, M. P., Gilson, E. and Geli, V. (2004). RPA regulates telomerase action by providing Est1p access to chromosome ends. Nature Genetics 36, 4654. doi: 10.1158/1541-7786.MCR-09-0073.CrossRefGoogle ScholarPubMed
Siqueira-Neto, J. L., Lira, C. B. B., Giardini, M. A., Khater, L., Perez, A. M., Peroni, L. A., dos Reis, J. R., Freitas-Junior, L. H., Ramos, C. H. and Cano, M. I. N. (2007). Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA. Biochemical and Biophysical Research Communications 358, 417423. doi: 10.1016/j.bbrc.2007.04.144.CrossRefGoogle Scholar
Stauffer, M. E. and Chazin, W. J. (2004). Structural mechanisms of DNA replication, repair, and recombination. Journal of Biological Chemistry 279, 3091530918. doi: 10.1074/jbc.R400015200.CrossRefGoogle ScholarPubMed
Sugiyama, T. and Kowalczykowski, S. C. (2002). Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation. Journal of Biological Chemistry 277, 3166331672. doi: 10.1074/jbc.R400015200.CrossRefGoogle ScholarPubMed
Tarsounas, M., Munoz, P., Claas, A., Smiraldo, P. G., Pittman, D. L., Blasco, M. A., and West, S. C. (2004). Telomere maintenance requires the RAD51D recombination/repair protein. Cell 117, 337347. doi: 10.1016/S0092–8674(04)00337-X.CrossRefGoogle ScholarPubMed
Verdun, R. E. and Karlseder, J. (2006). The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127, 709720. doi: 10.1016/j.cell.2006.09.034.CrossRefGoogle ScholarPubMed
Xu, X., Vaithiyalingam, S., Glick, G. G., Mordes, D. A., Chazin, W. J. and Cortez, D. (2008). The basic cleft of RPA70N binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling. Molecular and Cellular Biology 28, 73457353. doi: 10.1128/MCB.01079-08.CrossRefGoogle ScholarPubMed
Wold, M. S. (1997). Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annual Review of Biochemistry 66, 6192. doi: 10.1074/jbc.R400015200.CrossRefGoogle ScholarPubMed
Zou, Y., Liu, Y., Wu, X. and Shell, S. M. (2006). Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. Journal of Cellular Physiology 208, 267273. doi: 10.1128/MCB.01079-08.CrossRefGoogle ScholarPubMed
Supplementary material: Image

da Silveira Supplementary Material

Appendix

Download da Silveira Supplementary Material(Image)
Image 2.1 MB
Supplementary material: Image

da Silveira Supplementary Material

Appendix

Download da Silveira Supplementary Material(Image)
Image 1.6 MB
Supplementary material: Image

da Silveira Supplementary Material

Appendix

Download da Silveira Supplementary Material(Image)
Image 309.6 KB
Supplementary material: Image

da Silveira Supplementary Material

Appendix

Download da Silveira Supplementary Material(Image)
Image 239.7 KB