Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T00:25:13.988Z Has data issue: false hasContentIssue false

The moulting process and the phenomenon of intermoult growth in the filarial nematode Brugia pahangi

Published online by Cambridge University Press:  06 April 2009

R. E. Howells
Affiliation:
Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA
L. J. Blainey
Affiliation:
Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA

Summary

The larvae of Brugia pahangi recovered from the jird have been shown to grow continuously between moults, their length increasing at least 5-fold during the 4th instar. This intermoult growth is achieved without an increase in the surface area of larvae. The cuticle of very early 4th and 5th-stage worms is highly folded and intermoult growth is accommodated by an expansion of surface annular folds. The major increases in the surface area of larvae occur only through ecdysis, with an 8-fold increase in the surface area being achieved at the 3rd moult. The growth curve of these worms is therefore sigmoidal but the surface area curve is stepped. The relationship between the cuticles of nematodes and insects is discussed

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aoki, Y., Vincent, A. L., Ash, L. R. & Katamine, D. (1980). Scanning electron microscopy of third and fourth stage larvae and adults of Brugia pahangi (Nematoda: Filarioidea). Journal of Parasitology 66, 449–57.CrossRefGoogle Scholar
Ash, L. R. (1974). Rodent models for the study of lymphatic dwelling filarial worms. WHO Cyclostyled Report, WHO/FIL/74.121.Google Scholar
Bird, A. F. (1971). The Structure of Nematodes. London and New York: Academic Press.Google Scholar
Bird, A. F. (1976). The development and organisation of skeletal structures in nematodes. In The Organisation of Nematodes (ed. Croll, N. A.), pp. 107–37. London and New York: Academic Press.Google Scholar
Bonner, T. P., Menefee, M. G. & Etges, F. J. (1970). Ultrastructure of cuticle formation in a parasitic nematode, Nematospiroides dubius. Zeitschrift für Zellforschung 104, 193204.CrossRefGoogle Scholar
Bonner, T. P., Weinstein, P. P. & Saz, H. J. (1971). Synthesis of cuticular protein during the third moult in the nematode Nippostrongylus brasiliensis. Comparative Biochemistry and Physiology 40 B, 121–7.Google Scholar
Chen, S. N. & Howells, R. E. (1979 a). The uptake in vitro of dyes, monosaccharides and amino acids by the filarial worm Brugia pahangi. Parasitology 78, 343–54.CrossRefGoogle ScholarPubMed
Chen, S. N. & Howells, R. E. (1979 b). The in vitro cultivation of the infective larvae and the early mammalian stages of the filarial worm, Brugia pahangi. Annals of Tropical Medicine and Parasitology 73, 473–86.CrossRefGoogle ScholarPubMed
Davey, K. G. (1976). Hormones and hormonal effects in parasitic nematodes. In Biochemistry of Parasites and Host–Parasite Relationships (ed. Van den Bossehe, H.), pp. 359–72. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
Forsyth, K. P., Copeman, D. B., Abbot, A. P., Anders, R. F. & Mitchell, G. F. (1981). Identification of radioiodinated cuticular proteins and antigens of Onchocerca gibsoni microfilaria. Acta Tropica 38, 329–42.Google Scholar
Himmelhock, S., Kisiel, M. J. & Zuckerman, B. J. (1977). Caenorhabdites briggsae: electron microscope analysis of changes in negative surface charge density of the outer cuticular membrane. Experimental Parasitology 41, 118–23.CrossRefGoogle Scholar
Himmelhock, S. & Zuckerman, B. M. (1978). Caenorhabdites briggsae: ageing and the structural turnover of the outer cuticle surface and the intestine. Experimental Parasitology 45, 208–14.CrossRefGoogle Scholar
Horn, D. H. S., Wilkie, J. S. & Thompson, J. A. (1974). Isolation of β-ecdysone (20-hydroxy ecdysone) from the parasitic nematode Ascaris lumbricoides. Experientia 15, 1109–10.CrossRefGoogle Scholar
Howells, R. E. (1980). Filariae: dynamics of the surface. In The Host Invader Interplay (ed. Van den Bossehe, H.), pp. 6984. Amsterdam: Elsevier North-Holland Biomedical Press.Google Scholar
Howells, R. E. (1981). The surface of filarial nematodes. In Chemotherapy and Immunology in the Control of Malaria, Filariasis and Leishmaniasis (ed. Anund, N. and Sen, A. B.), pp. 173–86. Tata McGraw-Hill.Google Scholar
Howells, R. E. & Chen, S. N. (1981). Brugia pahangi: feeding and nutrient uptake in vitro and in vivo. Experimental Parasitology 51, 4258.CrossRefGoogle ScholarPubMed
Johnson, P. W., Van Grundy, S. D. & Thompson, W. W. (1970). Cuticle formation in Hemicycliophora arenaria, Aphelenchus avenae and Hirschmanniella gracilis. Journal of Nematology 2, 5979.Google ScholarPubMed
Kozek, W. J. (1971). The moulting pattern in Trichinella spiralis. II. An electron microscopic study. Journal of Parasitology 5, 1029–38.CrossRefGoogle Scholar
Lee, D. L. (1970). Moulting in nematodes: the formation of the adult cuticle during the final moult of Nippostrongylus brasiliensis. Tissue and Cell 2, 139–53.CrossRefGoogle ScholarPubMed
Lee, D. L. & Atkinson, H. J. (1976). Physiology of Nematodes, 2nd edn. Macmillan.CrossRefGoogle Scholar
Locke, M. (1974). The structure and formation of the integument in insects. In The Physiology of Insecta, vol. vi, 2nd edn. (ed. Rockstein, M.), pp. 123214. New York and London: Academic Press.CrossRefGoogle Scholar
Martinez-Palomo, A. (1978). Ultrastructural characterisation of the cuticle of Onchocerca volvulus microfilaria. Journal of Parasitology 64, 127–36.CrossRefGoogle ScholarPubMed
Ogilvie, B. M., Philipp, M., Jungery, M., Maizels, R. M., Worms, M. J. & Parkhouse, R. M. E. (1980). The surface of nematodes and the immune response of the host. In The Host Invader Interplay (ed. Van den Bossche, H.), pp. 99104. Amsterdam: Elsevier North Holland Biomedical Press.Google Scholar
Parkhouse, R. M. E., Philipp, M. & Ogilvie, B. M. (1981). Characterisation of surface antigens of Trichinella spiralis infective larvae. Parasite Immunology 3, 339–52.CrossRefGoogle ScholarPubMed
Philipp, M., Parkhouse, R. M. E. & Ogilvie, B. M. (1980 a). Biochemical characterisation of stage-specific antigenic proteins on the surface of Trichinella spiralis. In The Host Invader Interplay (ed. Van den Bossche, H.), pp. 147–54. Amsterdam: Elsevier North Holland Biomedical Press.Google Scholar
Philipp, M., Parkhouse, R. M. E. & Ogilvie, B. M. (1980 b). Changing proteins on the surface of a parasitic nematode. Nature, London 287, 538–40.CrossRefGoogle ScholarPubMed
Rogers, R., Denham, D. A. & Nelson, G. S. (1974). Studies with Brugia pahangi 5. Structure of the cuticle. Journal of Helminthology 48, 113–17.CrossRefGoogle ScholarPubMed
Samuelson, J. C., Caulfield, J. P. & David, J. R. (1980). Schistosoma mansoni: post transformational surface changes in schistosomula grown in vitro and in mice. Experimental Parasitology 50, 369–83.CrossRefGoogle ScholarPubMed
Schacher, J. P. (1962). Developmental stages of Brugia pahangi in the final host. Journal of Parasitology 48, 693706.CrossRefGoogle ScholarPubMed
Smith, H. V., Quinn, R., Kusel, J. R. & Girdwood, R. W. A. (1981). The effect of temperature and antimetabolites on antibody binding to the outer surface of second stage Toxocara canis larvae. Molecular Biochemistry and Parasitology 4, 183–93.CrossRefGoogle Scholar
Tanner, M. & Weiss, N. (1981). Dipetalonema viteae (Filarioidea): development of the infective larvae in micropore chambers implanted into normal infected and immunised jirds. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 173–4.CrossRefGoogle ScholarPubMed
Vetter, J. C. M. & Klaver-Wesseling, J. C. M. (1978). IgG antibody binding to the outer surface of infective larvae of Ancylostoma caninum. Zeitschrift für Parasitenkunde 58, 91–6.CrossRefGoogle Scholar
Watson, B. D. (1965). The fine structure of the body wall and the growth of the cuticle in the adult nematode Ascaris lumbricoides. Quarterly Journal of Microscopical Science 106, 8396.Google Scholar
Weis-Fogh, T. (1969). Structure and formation of insect cuticle. In Insect infrastructure. Symposia of the Royal Entomological Society of London, no. 5, pp. 165–85. Oxford and Edinburgh: Blackwell Scientific Publications.Google Scholar
Weiss, N. & Tanner, M. (1981). Immunogenicity of the surface of filarial larvae (Dipetalonema viteae). Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 179–81.CrossRefGoogle ScholarPubMed
Wharton, R. H. (1959). A simple method of mounting and preserving filarial larvae. Bulletin of the World Health Organization 20, 729–30.Google ScholarPubMed
Zuckerman, B. M., Kahane, I. & Himmelhock, S. (1979). Caenorhabditis briggsae and C. elegans. Partial characterisation of cuticle surface carbohydrates. Experimental Parasitology 47, 419–24.CrossRefGoogle Scholar