Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T16:57:34.323Z Has data issue: false hasContentIssue false

Molecular characterization of two Schistosoma mansoni proteins sharing common motifs with the vif protein of HIV-1

Published online by Cambridge University Press:  06 April 2009

J. Khalife
Affiliation:
Centre d'immunologie et de Biologie Parasitaire, INSERM U 167-CNRS 624, Institut Pasteur, 1 Rue de Professeur Calmette, B.P 245, 59019 Lille Cédex, France
R. J. Pierce
Affiliation:
Centre d'immunologie et de Biologie Parasitaire, INSERM U 167-CNRS 624, Institut Pasteur, 1 Rue de Professeur Calmette, B.P 245, 59019 Lille Cédex, France
C. Godin
Affiliation:
Centre d'immunologie et de Biologie Parasitaire, INSERM U 167-CNRS 624, Institut Pasteur, 1 Rue de Professeur Calmette, B.P 245, 59019 Lille Cédex, France
A. Capron
Affiliation:
Centre d'immunologie et de Biologie Parasitaire, INSERM U 167-CNRS 624, Institut Pasteur, 1 Rue de Professeur Calmette, B.P 245, 59019 Lille Cédex, France

Summary

We have previously described a rat mAb directed against a peptide derived from the vif protein of HIV-1 that recognized two Schistosoma mansoni (Sm) antigens with a major band at 65 kDa. Epitope mapping of this mAb using overlapping hexapeptides derived from the vif peptide revealed that the motif recognized was PLPSVT. The screening of a Sm cDNA library led to the identification of two clones, Sm70 and Sm65. The two deduced protein sequences did not share any common structural features apart from the epitope recognized by the mAb (see below), and did not show significant identity to sequences present in the data bases. However, the N terminus of the deduced sequence of the Sm70 protein exhibits a consensus sequence known to be an ATP/GTP binding site. Furthermore, the C terminus of the deduced Sm65 protein sequence was found to contain a conserved hexapeptide with a consensus sequence LPETGE reported to be an important motif of the surface proteins of gram-positive cocci. Both proteins exhibit a peptide sequence (PLRSVT for Sm70 and PVGSVT for Sm65) similar to the epitope recognized by the mAb anti-vif. Western blotting experiments showed that the mAb anti-vif reacted with both proteins. However, only Sm65 was recognized by sera from HIV-1- seropositive individuals, whereas both proteins were recognized by S. mansoni-infected patients.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bairoch, A. (1992). Prosite: a dictionary of sites and patterns in proteins. Nucleic Acids Research 20, 2013–18.CrossRefGoogle ScholarPubMed
Biggar, R. J., Melbye, M., Sarin, P. S., Demedts, P., Deacollette, C., Gigase, P. L., Kestens, L., Bodner, A. J., Leopold Paluku, W. J. S. & Blattner, W. A. (1985). ELISA HTLV retrovirus antibody reactivity associated with malaria and immune complexes in healthy Africans. Lancet ii, 520.CrossRefGoogle Scholar
Burch, J. B. E. (1984). Identification and sequence analysis of the 5′ end of the major chicken vitellogenin gene. Nucleic Acids Research 12, 1117–35.CrossRefGoogle ScholarPubMed
Butterworth, A. E., Dalton, P. R., Dunne, D. W., Mugambi, M., Ouma, J. H., Richardson, B. A., Arap Siongok, T. K. & Sturrock, R. F. (1984). Immunity after treatment of human schistosomiasis mansoni. I. Study design, pretreatment observations and the results of treatment. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 108–23.CrossRefGoogle ScholarPubMed
Butterworth, A. E., Capron, M., Cordingley, J. S., Dalton, P. R., Dunne, D. W., Kariuki, H. C., Koech, D., Mugambi, M., Ouma, J. H., Prentice, M. A., Richardson, B. A., Siongok, T. K. A., Sturrock, R. F. & Taylor, D. W. (1985). Immunity after treatment of human schistosomiasis. II. Identification of resistant individuals, and analysis of their immune responses. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 393408.CrossRefGoogle ScholarPubMed
Culmenn, B., Gomard, E., Kieny, M., Guy, B., Dreyfus, F., Saimot, A. G., Sereni, D., Sicard, D. & Levy, J. P. (1991). Six epitopes reacting with human cytotoxic CD8+ T cells in the central region of the HIV-1 nef protein. Journal of Immunology 146, 1560–5.CrossRefGoogle Scholar
De Lima Costa, M. F. F., Proieti, F. A., Paulino, U. H. M., Antunes, C. M. F., Giumaraes, M. D. C., Rocha, R. S. & Katz, N. (1988). Absence of cross-reactivity between Schistosoma mansoni infection and human immunodeficiency virus (HIV). Transactions of the Royal Society of Tropical Medicine and Hygiene 82, 262.CrossRefGoogle Scholar
Devash, Y., Reagan, K., Wood, D., Turner, J., Parrington, M. & Yong Kang, C. (1990). Antibodies against AIDS proteins. Nature, London 345, 581.CrossRefGoogle ScholarPubMed
Dyrberg, T. & Oldstone, M. B. A. (1986). Peptides as antigens. Importance of orientation. Journal of Experimental Medicine 164, 1344–9.CrossRefGoogle ScholarPubMed
Golding, H., Robey, F. A., Gates, F. T., Linder, W., Beining, P. R., Hoffman, T. & Golding, B. (1988). Identification of homologous regions in human immunodeficiency virus I gp 41 and human MHC class II β1 domain. I. Monoclonal antibodies against the gp41-derived peptide and patient's sera react with native HLA class II antigens, suggesting a role for autoimmunity in the pathogenesis of acquired immune deficiency syndrome. Journal of Experimental Medicine 167, 914–23.CrossRefGoogle Scholar
Golding, H., Shearer, G. M., Hillmen, K., Lucas, P., Manischewitz, J., Zajac, R. A., Clerici, M., Cress, R. E., Boswell, R. N. & Golding, B. (1989). Common epitope in human immunodeficiency virus (HIV) IgP41 and HLA class II elicits immunosuppressive autoantibodies capable of contributing to immune dysfunction in HIV-1 infected individuals. Journal of Clinical Investigation 83, 1430–5.CrossRefGoogle Scholar
Guss, B., Uhlen, M., Nilsson, B., Lindberg, M., Sjoquist, J. & Sjodahl, J. (1984). Region X, the cell-wall- attachment part of staphylococcal protein A. European Journal of Biochemistry 138, 413–20.CrossRefGoogle ScholarPubMed
Hollingshead, S. K., Fishetti, V. A. & Scott, J. R. (1986) Complete nucleotide sequence of type 6 M protein of the group A Streptococcus: repetitive structure and membrane anchor. Journal of Biological Chemistry 261, 1677–86.CrossRefGoogle Scholar
Joensson, K., Signaes, C., Mueller, H. P. & Lindberg, M. (1991). Two different genes encode fibronectin binding proteins in Staphylococcus aureus. The complete nucleotide sequence and characterization of the second gene. European Journal of Biochemistry 202, 1041–8.CrossRefGoogle Scholar
Kestens, L., Biggar, R. J., Melbye, M., Bodner, A. J., Defeyter, M. & Gigase, P. L. (1985). Absence of immunosuppression in healthy subjects from eastern Zaire who are positive for HTLV-III antibody. New England Journal of Medicine 312, 1517.Google ScholarPubMed
Khalife, J., Capron, M., Capron, A., Grzych, J. M., Butterworth, A. E., Dunne, D. W. & Ouma, J. H. (1986). Immunity in human schistosomiasis: regulation of protective immune mechanisms by IgM blocking antibodies. Journal of Experimental Medicine 164, 1626–40.CrossRefGoogle ScholarPubMed
Khalife, J., Grzych, J. M., Pierce, R. J., Ameisen, J. C., Schacht, A. M., Gras-Masse, H., Tartar, A., Lecocq, J. P. & Capron, A. (1990). Immunological cross- reactivity between the human immunodeficiency virus type I virion infectivity factor and a 170 kD surface antigen of Schistosoma mansoni. Journal of Experimental Medicine 172, 1001–4.CrossRefGoogle Scholar
Khalife, J., Trottein, F., Schacht, A. M., Godin, C., Pierce, R. J. & Capron, A. (1993). Cloning of the gene encoding a Schistosoma mansoni antigen homologous to human Ro/SS-A autoantigen. Molecular and Biochemical Parasitology 57, 193202.CrossRefGoogle ScholarPubMed
Pancholi, V. & Fischetti, V. (1989). Identification of an endogeneous membrane anchor-cleaving enzyme for group A Streptococcal M protein. Journal of Experimental Medicine 170, 2119–33.CrossRefGoogle ScholarPubMed
Ratner, L., Haseltine, W., Patarca, R., Livak, K. J., Starcich, B., Josephs, S. F., Doran, E. R., Rafalski, J. A., Whitehorn, E. A., Baumeister, K., Ivanoff, L., Petteway, S. R., Pearson, M. L., Lautenberger, J. A., Papas, T. S., Ghrayeb, J., Chang, N. T., Gallo, R. C. & Wong-Staal, F. (1985). Vif protein-human immunodeficiency virus type I. Nature, London 313, 277–84.CrossRefGoogle Scholar
Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74, 5463–8.CrossRefGoogle ScholarPubMed
Saraste, M., Sibbald, P. R. & Wittinghofer, A. (1990). the P-loop-a common motif in ATP- and GTP-binding proteins. Trends in Biochemical Sciences 15, 430–4.CrossRefGoogle ScholarPubMed
Scheeper, M. M., Lankhof, H., Puijk, W. C. & Meloen, R. H. (1989). Manipulation of antipeptide immune response by varying the coupling of the peptide with the carrier protein. Molecular Immunology 26, 125–34.Google Scholar
Schneewind, O., Jones, K. F. & Fischetti, V. A. (1990). Sequence and structural characteristics of the trypsin-resistant T6 surface protein of group A Streptococci. Journal of Bacteriology 172, 3310–17.CrossRefGoogle ScholarPubMed
Schwarzbauer, J. E., Tamkun, J. W., Lemischka, I. R. & Hynes, R. O. (1983). Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell 35, 421–31.CrossRefGoogle ScholarPubMed
Signas, C., Raucci, G., Jonsson, P., Anantharamaiah, G. M., Hook, M. & Lindberg, M. (1989). Nucleotide sequence of the gene for fibronectin-binding protein from Staphylococcus aureus: use of this peptide sequence in the synthesis of biologically active peptides. Proceedings of the National Academy of Sciences, USA 86, 699–703.CrossRefGoogle ScholarPubMed
Smith, B. D. & Johnson, K. S. (1988). Single-step purification of polypeptides expressed in E. coli as fusion with glutathione S-transferase. Gene 67, 3140.CrossRefGoogle Scholar
Spire, B., Sire, J., Zachar, V., Rey, F., Barré-Sinoussi, F., Galibert, F., Hampe, A. & Chermann, J. C. (1989). Nucleotide sequence of HIV1-NDK: a highly cytopathic strain of the human immunodeficiency virus. Gene 81, 275–84.CrossRefGoogle ScholarPubMed
Vaitukaitis, J., Robbins, J. B., Nieschlaf, E. & Ross, G. T. (1971). A method for producing specific antisera with small doses of immunogen. Journal of Clinical Endocrinology 33, 988–91.CrossRefGoogle ScholarPubMed
World Health Organization. Weekly Epidemiological Record, 1989. Acquired immunodeficiency syndrome (AIDS) 64, 265.Google Scholar
Zopf, D., Dineva, B., Betz, H. & Gundelfinger, E. Submitted to the EMBL Data Library, 11 1989.Google Scholar