Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T17:03:39.648Z Has data issue: false hasContentIssue false

Molecular characterization of trypanosome species and subgroups within subgenus Nannomonas

Published online by Cambridge University Press:  06 April 2009

L. H. Garside
Affiliation:
Department of Pathology and Microbiology, University of Bristol, School of Veterinary Science, Langford, Bristol BS18 7DU
W. C. Gibson
Affiliation:
Department of Pathology and Microbiology, University of Bristol, School of Veterinary Science, Langford, Bristol BS18 7DU

Summary

Restriction fragment length polymorphism (RFLP) analysis of both genomic and kinetoplast DNA from representative stocks from 3 Trypanosoma congolense subgroups (Savannah, Forest, and Kilifi), T. simiae and T. godfreyi, was used to investigate the relatedness of the different groups within subgenus Nannomonas, DNA probes for β-tubulin and the ribosomal DNA (rDNA) locus were isolated from a T. congolense Savannah genomic library; additional probes were generated by PCR amplification of mini-exon and glutamate and alanine rich protein (GARP) gene sequences. Our results provide evidence that at the molecular level the T. congolense Savannah and Forest groups are the most closely related groups within the subgenus Nannomonas: the Savannah and the Forest groups had mini-exon gene repeats of identical size, which shared homology, had mini-circles of the same size and had a high level of similarity (63%) when the banding patterns produced with a tubulin and rDNA probe were subjected to numerical analysis. All other pairwise combinations of groups have very low percentage similarities of < 10%, suggesting that the Kilifi group trypanosomes, are as distantly related to the T. congolense Savannah and Forest groups as they are to T. simiae or T. godfreyi. The conservation of the GARP gene between the Savannah, Forest and Kilifi groups provides the only evidence linking the Kilifi trypanosomes to the other groups in T. congolense. We find no evidence for the presence of the GARP gene in the T. simiae or T. godfreyi group trypanosomes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayne, R. A. L., Kilbride, E. A., Lainson, A., Tetley, L. & Barry, D. (1993). A major surface antigen of procyclic stage Trypanosoma congolense. Molecular and Biochemical Parasitology 61, 295310.CrossRefGoogle Scholar
Beecroft, R. P., Roditi, I. & Pearson, T. W. (1993). Identification and characterisation of an acidic major surface glycoprotein from procyclic stage T. congolense. Molecular and Biochemical Parasitology 61, 285–94.CrossRefGoogle Scholar
Borst, P., Fase-Fowler, F. & Gibson, W. (1981). Quantitation of genetic differences between Trypanosoma brticei gambiense T. b. rhodesiense and T. b. brucei by restriction enzyme analysis of kinetoplast DNA. Molecular and Biochemical Parasitology 3, 117–31.CrossRefGoogle Scholar
Brunel, F., Davison, J., Merchez, M., Borst, P. & Weijers, P. J. (1980). The use of recombinant DNA techniques in the analysis of Trypanosoma brncei kinetoplast DNA. In DNA – Recombination Interactions and Repair, (ed. Zedrazil, S. & Sponar, J.) pp. 4554. London: Pergamon Press.CrossRefGoogle Scholar
Campbell, D. A. (1992). Bodo caitdatus medRNA and 5S gene: Tandem arrangement and phylogenetic analysis. Biochemical and Biophysical Research Communications 182, 1053–8.CrossRefGoogle Scholar
Cook, G. A. & Donelson, J. E. (1987). Mini-exon gene repeats of Trypanosoma congolense have internal repeats of 190 base pairs. Molecular and Biochemical Parasitology 25, 113–22.CrossRefGoogle ScholarPubMed
Cunningham, I. (1977). New culture medium for the maintenance of tsetse tissues and growth of trypanosomatids. Journal of Protozoology 24, 325–9.CrossRefGoogle ScholarPubMed
De Lange, T., Berkvens, T. M., Veerman, H. J. G., Frasch, A. C. C., Barry, D. J. & Borst, p. (1984 a). Comparison of the genes coding for the 5′ terminal sequence of messenger RNAs in three trypanosome species. Nucleic Acids Research 12, 4431–43.CrossRefGoogle ScholarPubMed
De Lange, T., Michels, P. A. M., Veerman, H. J. G., Cornelissen, A. W. C. A. & Borst, P. (1984 b). Many trypanosome messenger RNAs share a common 5′ terminal sequence. Nucleic Acids Research 12, 3777–90.CrossRefGoogle Scholar
Dukes, P., Faye, J., McNamara, J. J., Snow, W. F., Rawlings, P., Dwinger, R. H. & Brun, R. (1989). Isolation and cultivation in vitro to the infective metacyclic stage of Trypanosoma (Nannomonas) simiae from Glossina morsitans. Acta Tropica 46, 191203.CrossRefGoogle Scholar
Feinberg, A. P. & Vogelstein, B. (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Annals of Biochemistry 132, 613.CrossRefGoogle ScholarPubMed
Fernandes, O., Degrave, W. M. & Campbell, D. A. (1993). The mini-exon gene: A molecular marker for Endotrypamim schaudinni. Parasitology 107, 219–24.CrossRefGoogle ScholarPubMed
Fernandes, O., Murthy, V. K., Kurath, U., Degrave, W. M. & Campbell, D. A. (1994). Mini-exon gene variation in human pathogenic Leishmania species. Molecular and Biochemical Parasitology 66, 261–71.CrossRefGoogle ScholarPubMed
Gashumba, J. K. (1986). Two enzymically distinct stocks of Trypanosoma congolense. Research in Veterinary Science 40, 411–12.CrossRefGoogle ScholarPubMed
Gashumba, J. K., Baker, R. D. & Godfrey, D. G. (1988). Trypanosoma congolense: the distribution of enzymic variants in East and West Africa. Parasitology 96, 475–86.CrossRefGoogle ScholarPubMed
Gibson, W. C., Borst, P. & Fase-Fowler, F. (1985). Further analysis of intra-specific variation in Trypanosoma brucei using restriction site polymorphisms in the maxi-circle of kinetoplast DNA. Molecular and Biochemical Parasitology 15, 2136.CrossRefGoogle Scholar
Gibson, W. C., Dukes, P. & Gashumba, J. K. (1988). Species specific DNA probes for the identification of trypanosomes in tsetse. Parasitology 97, 6373.CrossRefGoogle ScholarPubMed
Godfrey, D. G. (1982). Diversity within Trypanosoma congolense. In Perspectives in Trypanosomiases Research, (ed. Baker, J. R.) pp. 3746. London: John Wiley & Sons.Google Scholar
Godfrey, D. G. (1977). Problems in distinguishing between the morphologically similar trypanosomes of mammals. Protozoology 3, 3349.Google Scholar
Jaccard, p. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise de Science Naturelle 44, 223–70.Google Scholar
Knowles, G., Betschart, B., Kukla, B. A., Scott, J. R. & Majiwa, P. A. O. (1988). Genetically discrete populations of Trypanosoma congolense from livestock on the Kenya Coast. Parasitology 96, 461–74.CrossRefGoogle Scholar
Majiwa, P. A. O., Hamers, R., Van Mervienne, N. & Matthyssens, G. (1986). Evidence for genetic diversity in Trypanosoma congolense. Parasitology 93, 291304.CrossRefGoogle Scholar
Majiwa, P. A. O., Maina, M., Waitumbi, J. N., Mihok, S. & Zweygarth, E. (1993). Trypanosoma (Nannomonas) congolense: molecular characterization of a new genotype from Tsavo, Kenya. Parasitology 106, 151–62.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O. & Webster, P. (1987). A repetitive deoxyribonucleic acid sequence distinguishes Trypanosoma simiae from Trypanosoma congolense. Parasitology 95, 543–98.CrossRefGoogle Scholar
Maniatis, T., Fritsch, S. & Sambrook, J. (1982). Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory.Google Scholar
Masake, R. A., Nantuyla, V. M., Musoke, A. J., Moloo, A. J. & Nguli, K. (1987). Characterization of Trypanosoma congolense serodemes in stocks isolated from cattle introduced onto a ranch in Kilifi, Kenya. Parasitology 94, 349–57.CrossRefGoogle ScholarPubMed
Masiga, D. K., Smyth, A. J., Hayes, P., Bromidge, T. J. & Gibson, W. G. (1992). Sensitive detection of trypanosomes in tsetse flies by DNA amplification. International Journal for Parasitology 22, 909–18.CrossRefGoogle ScholarPubMed
Maslov, D. A., Elgort, M. G., Wong, S., Peckova, H., Lom, J., Simpson, L. & Campbell, D. A. (1993). Organization of the mini-exon and 5S genes in the kinetoplastid Trypanosoma borreli. Molecular and Biochemical Parasitology 61, 127–36.CrossRefGoogle ScholarPubMed
Mehlitz, D., Zillman, U., Scott, C. M. & Godfrey, D. G. (1982). Epidemiological studies on the animal reservoir of gambiense sleeping sickness. Part III. Characterisation of Trypanozoon stocks by isoenzymes and sensitivity to human serum. Tropenmedizin und Parasitologie 33, 113–18.Google ScholarPubMed
McNamara, J. J. (1990). Subgeneric variation in Nannomonas: The characterization of isolates from The Gambia. Ph.D. thesis, University of Bristol.Google Scholar
McNamara, J. J., Mohammed, G. & Gibson, W. G. (1994). Trypanosoma (Nannomonas) godfreyi sp.nov. from tsetse flies in The Gambia: biological and biochemical characterization. Parasitology 109, 497509.CrossRefGoogle ScholarPubMed
McNamara, J. J. & Snow, W. F. (1991). Improved identification of Nannomonas infections in tsetse flies from The Gambia. Acta Tropica 48, 127–36.CrossRefGoogle Scholar
Mohammed, G. (1991). The comparative pathogenicities of genetically defined trypanosomes of the subgenus Nannomonas, with special reference to a new species. Ph.D. thesis, University of Bristol.Google Scholar
Murray, M., Morrison, W. I. & Whitelaw, D. D. (1982). Host susceptibility to African trypanosomiasis: trypanotolerance. Advances in Parasitology 21, 168.CrossRefGoogle ScholarPubMed
Murthy, V. K., Dibbern, K. M. & Campbell, D. A. (1992). PCR amplification of mini-exon genes differentiates Trypanosoma cruzi from Trypanosoma rangeli. Molecular and Cellular Probes 6, 237–43.CrossRefGoogle ScholarPubMed
Nelson, R. G., Parsons, M., Selkirk, M., Newport, G., Barr, P. J. & Agabian, N. (1984). Sequences homologous to variant antigen mRNA spliced leader in Trypanosomatidae which do not undergo antigenic variation. Nature, London 308, 665–7.CrossRefGoogle Scholar
Paling, R. W., Moloo, S. K. & Jenni, L. (1987). Trypanosoma congolense: Host responses following tsetse transmitted infection of Kilifi isolates in goats. Experimental Parasitology 63, 279–87.CrossRefGoogle ScholarPubMed
Richardson, J. P., Beecroft, R. P., Tolson, D. L., Liu, M. K. & Pearson, T. W. (1988). Procyclin: an unusual immunodominant glycoprotein surface antigen from the procyclic stage of African trypanosomes. Molecular and Biochemical Parasitology 31, 203–16.CrossRefGoogle ScholarPubMed
Richardson, J. P., Jenni, L., Beecroft, R. P. & Pearson, T. W. (1986). Procyclic tsetse fly midgut forms and culture forms of African trypanosomes share stage and species-specific surface antigens identified by monoclonal antibodies. Journal of Immunology 136, 2259–67.CrossRefGoogle ScholarPubMed
Roditi, I., Schwarz, H., Pearson, H., Beecroft, R. P., Liu, M. K., Richardson, J. P., Buhring, H. J., Peiss, J., Bulow, R., Williams, R. O. & Overath, P. (1989). Procyclin gene expression and the loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. Journal of Cell Biology 108, 737–46.CrossRefGoogle ScholarPubMed
Schwartz, D. C. & Cantor, C. R. (1984). Separation of yeast chromosome-sized DNAs by pulsed field gel electrophoresis. Cell 37, 6775.CrossRefGoogle Scholar
Seebeck, T., Whittaker, P. A., Imboden, M. A., Hardman, N. & Braun, R. (1983). Tubulin genes of Trypanosoma brucei: a tightly clustered family of alternating genes. Proceedings of the National Academy of Sciences, USA 80, 4634–8.CrossRefGoogle ScholarPubMed
Simpson, L. & Berliner, J. (1974). Isolation of kDNA from Leishmania taratolae in the form of a network. Journal of Protozoology 21, 382–93.CrossRefGoogle ScholarPubMed
Sneath, P. H. A. & Sokal, R. R. (1973). Numerical Taxonomy. San Francisco: W. H. Freeman and Company.Google Scholar
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.CrossRefGoogle ScholarPubMed
Thomashow, L. S., Milhaussen, M., Ruther, W. J. A. & Agabian, N. (1983). Tubulin genes are tandemly linked and clustered in the genome of Trypanosoma brucei. Cell 32, 3543.CrossRefGoogle ScholarPubMed
Tibayrenc, M. (1993). Entamoeba, Giardia and Toxoplasma: Clones or cryptic species? Parasitology Today 9, 102–5.CrossRefGoogle ScholarPubMed
Van Der Ploeg, L. H. T., Bernards, A., Rijsewijke, F. & Borst, P. (1982). Characterisation of the DNA duplication-transposition that controls the expression of 2 genes for variant surface glycoproteins in Trypanosoma brucei. Nucleic Acids Research 10, 593609.CrossRefGoogle ScholarPubMed
Van Der Ploeg, L. H. T., Schwartz, D. C., Cantor, C. R. & Borst, P. (1984). Antigenic variation in Trypanosoma brucei analysed by electrophoretic separation of chromosome sized DNA molecules. Cell 37, 7784.CrossRefGoogle Scholar
White, T. C., Rudenko, G. & Borst, P. (1986). Three small RNAs within the 10 kb trypanosome rRNA transcription unit are analogous to Domain VII of other eukaryotic 28S rRNAs. Nucleic Acids Research 14, 9471–89.CrossRefGoogle ScholarPubMed
Young, C. J. & Godfrey, D. G. (1983). Enzyme polymorphism and the distribution of Trypanosoma congolense isolates. Annals of Tropical Medicine and Parasitology 72, 467–81.CrossRefGoogle Scholar
Zweygarth, E., Gray, M. & Kaminsky, R. (1991). Axenic in vitro cultivation of Trypanosoma vivax trypomastigote forms. Tropical Medicine and Parasitology 42, 45–8.Google ScholarPubMed