Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T02:07:22.171Z Has data issue: false hasContentIssue false

Molecular and immunological characterization of L14 ribosomal protein from Leishmania braziliensis

Published online by Cambridge University Press:  01 March 2004

A. C. GONZÁLEZ
Affiliation:
Departamento de Parasitología. Facultad de Farmacia, Universidad de La Laguna. Avda. Francisco Sánchez s/n. C.P. 38271 La Laguna, Tenerife, Spain
M. C. THOMAS
Affiliation:
Unidad Mixta de Investigaciones Médicas. Hospital Universitario San Cecilio, SAS, Avda. Dr. Oloriz 16, C.P. 18012 Granada, Spain
E. MARTÍNEZ-CARRETERO
Affiliation:
Departamento de Parasitología. Facultad de Farmacia, Universidad de La Laguna. Avda. Francisco Sánchez s/n. C.P. 38271 La Laguna, Tenerife, Spain
E. CARMELO
Affiliation:
Departamento de Parasitología. Facultad de Farmacia, Universidad de La Laguna. Avda. Francisco Sánchez s/n. C.P. 38271 La Laguna, Tenerife, Spain
M. C. LÓPEZ
Affiliation:
Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina ‘López Neyra’, CSIC, Calle Ventanilla 11, 18001 Granada, Spain
B. VALLADARES
Affiliation:
Departamento de Parasitología. Facultad de Farmacia, Universidad de La Laguna. Avda. Francisco Sánchez s/n. C.P. 38271 La Laguna, Tenerife, Spain

Abstract

The isolation and molecular characterization of the gene coding for L14 ribosomal protein from L. braziliensis is described. There are 2 copies of the gene per haploid genome, repeated in a head-to-tail tandem orientation and located in a single chromosome of approximately 950 kb. Northern blot analyses indicate the presence of a single transcript of 0·95 kb which is up-regulated when parasites reach the stationary growth phase. L. braziliensis L14 gene codes for a 175 amino acid long polypeptide showing 75–83% sequence identity with L14 proteins from trypanosomatids and approximately 25% with its counterparts from higher eukaryotic organisms. L14 ribosomal proteins from trypanosomatids and higher eukaryotes share along their molecules a similar distribution pattern of theoretically functional domains. L. braziliensis L14 recombinant protein is not recognized by sera from cutaneous leishmaniasis patients. Immunization of mice with one dose of L14 recombinant protein and a second dose of L14 protein covalently linked to the HSP70 from Trypanosoma cruzi induces a high antibody level against this L14 protein, which is mostly of the IgG2a subtype, as well as a strong increase in splenocyte proliferation index.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ABBAS, A. K., MURPHY, K. M. & SHER, A. (1996). Functional diversity of helper T lymphocytes. Nature, London 53, 383387.CrossRefGoogle Scholar
ASLUND, L., CARLSSON, L., HENRIKSSON, J., RYDAKER, M., TORO, G. C., GALANTI, N. & PETTERSSON, U. (1994). A gene family encoding heterogeneous histone H1 proteins in Trypanosoma cruzi. Molecular and Biochemical Parasitology 65, 317330.CrossRefGoogle Scholar
AOKI, M., KORANYI, L., RIGGS, A. C., WASSON, J., CHIU, K. C., VAXILLAIRE, M., FROGUEL, P., GOUGH, S., LIU, L., DONIS-KELLER, H. & PERMUTT, M. A. (1996). Identification of trinucleotide repeat-containing genes in human pancreatic islets. Diabetes 45, 157164.CrossRefGoogle Scholar
BARRIOS, C., LUSSOW, A. R., VAN EMBDEN, J., VAN DER ZEE, R., RAPPUOLI, R., COSTANTINO, P., LOUIS, J. A., LAMBERT, P. H. & DEL GIUDICE, G. (1992). Mycobacterial heat-shock proteins as carrier molecules. II: The use of the 70-kDa mycobacterial heat-shock protein as carrier for conjugated vaccines can circumvent the need for adjuvants and Bacillus Calmette Guerin priming. European Journal of Immunology 22, 13651372.Google Scholar
BECCARI, E., MAZZETTI, P., MILEO, A., BOZZONI, I., PIERANDREI-AMALDI, P. & AMALDI, F. (1986). Sequences coding for the ribosomal protein L14 in Xenopus laevis and Xenopus tropicalis; homologies in the 5′ untranslated region are shared with other r-protein mRNAs. Nucleic Acids Research 14, 76337646.CrossRefGoogle Scholar
BOYER, J., PASCOLO, S., RICHARD, G. F. & DUJON, B. (1993). Sequence of a 7·8 kb segment on the left arm of yeast chromosome XI reveals four open reading frames, including the CAP1 gene, an intron-containing gene and a gene encoding a homolog to the mammalian UOG-1 gene. Yeast 9, 279287.CrossRefGoogle Scholar
CAMPOS-NETO, A., SOONG, L., CORDOVA, J. L., SANT'ANGELO, D., SKEIKY, Y. A., RUDDLE, N. H., REED, S. G., JANEWAY, C. jr. & McMAHON-PRATT, D. (1995). Cloning and expression of a Leishmania donovani gene instructed by a peptide isolated from major histocompatibility complex class II molecules of infected macrophages. Journal of Experimental Medicine 182, 14231433.CrossRefGoogle Scholar
CARMELO, E., PÉREZ, J. A., ZURITA, A. I., PIÑERO, J. E., DE ARMAS, F., DEL CASTILLO, A. & VALLADARES, B. (2000). Small-scale isolation of high molecular weight DNA from Leishmania braziliensis. Journal of Parasitology 86, 844846.CrossRefGoogle Scholar
CHAN, Y. L., OLVERA, J. & WOOL, I. G. (1996). The primary structure of rat ribosomal protein L14. Biochemical and Biophysical Research Communications 222, 427431.CrossRefGoogle Scholar
COFFMAN, R. L., LEBMAN, D. A. & ROTHMAN, P. (1993). Mechanism and regulation of immunoglobulin isotype switching. Advances in Immunology 54, 229.CrossRefGoogle Scholar
CORDEIRO-DA-SILVA, A., COUTINHO, M., GUILVARD, E. & OUAISSI, A. (2001). Dual role of the Leishmania major ribosomal protein S3a homologue in regulation of T- and B-cell activation. Infection and Immunity 69, 65886596.CrossRefGoogle Scholar
GONZÁLEZ, A. C., MARTÍNEZ, E., CARMELO, E., PIÑERO, J. E., ALONSO, V., DEL CASTILLO, A. & VALLADARES, B. (2002). Analysis of NLS and rRNA binding motifs in the L25 ribosomal protein from Leishmania (Viannia) braziliensis: investigation of its diagnostic capabilities. Parasitology 125, 5157.CrossRefGoogle Scholar
HAYNES, S. R. (1997). Primary structure of Drosophila ribosomal protein L14 and identification of conserved protein motifs. DNA Sequence 8, 105108.CrossRefGoogle Scholar
LAEMMLI, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 27, 680685.CrossRefGoogle Scholar
MARAÑÓN, C., PLANELLES, L., ALONSO, C. & LOPEZ, M. C. (2000 a). HSP70 from Trypanosoma cruzi is endowed with specific cell proliferation potential leading to apoptosis. International Immunology 12, 16851693.Google Scholar
MARAÑÓN, C., THOMAS, M. C., PUERTA, C., ALONSO, C. & LÓPEZ, M. C. (2000 b). The stability and maturation of the H2A histone mRNAs from Trypanosoma cruzi are implicated in their post-transcriptional regulation. Biochimica et Biophysica Acta 1490, 110.Google Scholar
MARAÑÓN, C., THOMAS, M. C., PLANELLES, L. & LOPEZ, M. C. (2001). The immunization of A2/K(b) transgenic mice with the KMP11-Hsp70 fusion protein induces CTL response against human cells expressing the T. cruzi KMP11 antigen: identification of A2-restricted epitopes. Molecular Immunology 38, 279287.Google Scholar
MARTÍNEZ, E., THOMAS, M. C., ALONSO, V., CARMELO, E., GONZÁLEZ, A. C., DEL CASTILLO, A. & VALLADARES, B. (2002). Cloning and molecular characterization of the cDNA encoding histone H1 from Leishmania braziliensis. Journal of Parasitology 88, 199203.CrossRefGoogle Scholar
MIYAMOTO, Y., IMAMOTO, N., SEKIMOTO, T., TACHIBANA, T., SEKI, T., TADA, S., ENOMOTO, T. & YONEDA, Y. (1997). Differential modes of nuclear localization signals (NLS) recognition by three distinct classes of NLS receptors. The Journal of Biological Chemistry 272, 2637526381.CrossRefGoogle Scholar
PEDROSA, L. C., AZEREDO, V. M., DIETZE, R., CALLAHAN, H. L., BERMAN, J. D. & GROGL, M. (1999). Humoral immune responses among mucosal and cutaneous leishmaniasis patients caused by Leishmania. Journal of Parasitology 85, 10761083.Google Scholar
PERRAUT, R., LUSSOW, A. R., GAVOILLE, S., GARRAUD, O., MATILE, H., TOUGNE, C., VAN EMBDEN, J., VAN DER ZEE, R., LAMBERT, P. H. & GYSIN, J. (1993). Successful primate immunization with peptides conjugated to purified protein derivative or mycobacterial heat shock proteins in the absence of adjuvants. Clinical and Experimental Immunology 93, 382386.CrossRefGoogle Scholar
PINTO, E. F., DE MELLO CORTEZIA, M. & ROSSI-BERGMANN, B. (2003). Interferon gamma inducing oral vaccination with Leishmania amazonensis antigens protects BALB/c and C57BL/6 mice against cutaneous leishmaniasis. Vaccine 21, 35343541.CrossRefGoogle Scholar
PLANELLES, L., THOMAS, M. C., ALONSO, C. & LOPEZ, M. C. (2001). DNA immunization with Trypanosoma cruzi HSP70 fused to the KMP11 protein elicits a cytotoxic and humoral immune response against the antigen and leads to protection. Infection and Immunity 69, 65586563.CrossRefGoogle Scholar
REQUENA, J. M., ALONSO, C. & SOTO, M. (2000). Evolutionarily conserved proteins as prominent immunogens during Leishmania infections. Parasitology Today 16, 246250.CrossRefGoogle Scholar
SAMBROOK, J., FRITSCH, E. F. & MANIATIS, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, NY.
SINGH-JASUJA, H., HILF, N., ARNOLD-SCHILD, D. & SCHILD, H. (2001). The role of heat shock proteins and their receptors in the activation of the immune system. Biological Chemistry 382, 629636.CrossRefGoogle Scholar
SJÖLANDER, A., BALDWIN, T. M., CURTIS, J. M. & HANDMAN, E. (1998). Induction of Th1 immune response and simultaneous lack of activation of a Th2 response are required for generation of immunity to Leishmaniasis. Journal of Immunology 160, 39493957.Google Scholar
SOTO, M., ALONSO, C. & REQUENA, J. M. (2000). The Leishmania infantum acidic ribosomal protein LiP2a induces a prominent humoral response in vivo and stimulates cell proliferation in vitro and interferon-gamma (IFN-gamma) production by murine splenocytes. Clinical and Experimental Immunology 122, 212218.CrossRefGoogle Scholar
SRIVASTAVA, P. K. (2002). Interaction of heat shock proteins with peptides and antigen presenting cells. Annual Review of Immunology 20, 395425.CrossRefGoogle Scholar
SUZUE, K. & RICHARD, A. (1996). Adjuvant-free Hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. Journal of Immunology 156, 873879.Google Scholar
TANAKA, M., TANAKA, T., HARATA, M., SUZUKI, T. & MITSUI, Y. (1998). Triplet repeat containing ribosomal protein L14 gene in immortalized human endothelial cell line (t-HUE4). Biochemical and Biophysical Research Communications 243, 531537.CrossRefGoogle Scholar
THOMAS, M. C. & GONZÁLEZ, A. (1997). A transformation vector for stage-specific expression of heterologous genes in Trypanosoma cruzi epimastigotes. Parasitology Research 83, 151156.CrossRefGoogle Scholar
WILLIAMS, J. G., KUBELIK, A. R., LIVAK, K. J., RAFALSKI, J. A. & TINGEY, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Research 18, 65316535.CrossRefGoogle Scholar
YIGUANG, C. & BOROS, D. L. (1998). Identification of the immunodominant T cell epitope of p38 a major egg antigen, and characterization of the epitope-specific Th responsiveness during murine Schistosomiasis mansoni. Journal of Immunology 160, 54205427.Google Scholar