Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T06:42:49.308Z Has data issue: false hasContentIssue false

Modification of cellular immunity by Taenia multiceps (Cestoda): accessory macrophages and CD4+ lymphocytes are affected by two different coenurus factors

Published online by Cambridge University Press:  06 April 2009

N. K. Rakha
Affiliation:
Department of Veterinary Pathology, University of Liverpool, PO Box 147, Liverpool L69 3BX
J. B. Dixon
Affiliation:
Department of Veterinary Pathology, University of Liverpool, PO Box 147, Liverpool L69 3BX
P. Jenkins
Affiliation:
Department of Veterinary Pathology, University of Liverpool, PO Box 147, Liverpool L69 3BX
S. D. Carter
Affiliation:
Department of Veterinary Pathology, University of Liverpool, PO Box 147, Liverpool L69 3BX Department of Veterinary Clinical Science, University of Liverpool, PO Box 147, Liverpool L69 3BX
G. C. Skerritt
Affiliation:
Department of Veterinary Pre-clinical Science, University of Liverpool, PO Box 147, Liverpool L69 3BX
S. Marshall-Clarke
Affiliation:
Department of Human Anatomy and Cell Biology, University of Liverpool, PO Box 147, Liverpool L69 3BX

Extract

Taenia multiceps coenurus fluid was analysed by fast protein liquid chromatography in order to separate the factors responsible for previously reported modification of immunological activity in macrophages and T-cells. One factor, F7, was found to be mitogenic for murine L3T4+ T-cells, to be macrophage dependent, to require macrophage compatibility at the I region of the H2 complex, to increase the sensitivity of T-cells to regulatory signals from macrophages and to increase the rate of generation of splenic rosette-forming cells (RFC) against sheep red cells. A second factor, F24, was found to alter macrophages so as to render them suppressive, rather than stimulatory, for parasite-activated and Con A-activated lymphocyte transformation, to depress the rate of generation of RFC and to antagonize the mitogenic effect of F7. The combined actions of these two factors are, therefore, sufficient to explain the known immunomodulatory effects of the metacestode.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali-Khan, Z. (1978). Pathological changes in the lymphoreticular tissues of Swiss mice infected with Echinococcus granulosus cysts. Zeitschrift für Parasitenkunde 58, 4754.CrossRefGoogle ScholarPubMed
Allan, D., Jenkins, P., Connor, R. J. & Dixon, J. B. (1981). A study of immunoregulation of Balb/c mice by Echinococcus granulosus equinus during prolonged infection. Parasite Immunology 3, 137–42.Google Scholar
Allan, D., Jenkins, P. & Crampton, F. I. (1977). The effects of Freund's complete adjuvant on the cellular immune response in mice to a porcine strain of Escherichia coli lipopolysaccharide. Research in Veterinary Science 23, 97101.CrossRefGoogle ScholarPubMed
Cox, D. A., Dixon, J. B. & Marshall-Clarke, S. (1986). Transformation induced by Echinococcus granulosus protoscoleces in unprimed mouse spleen cells: identity and MHC restriction of participating cell types. Immunology 57, 461–6.Google ScholarPubMed
Cox, D. A., Marshall-Clarke, S. & Dixon, J. B. (1989). Activation of text-abstract murine B cells by Echinococcus granulosus. Immunology 67, 1620.Google Scholar
Dixon, J. B., Jenkins, P. & Allan, D. (1982). Immune recognition of Echinococcus granulosus. 1. Parasite-activated, primary transformation by text-abstract murine lymph node cells. Parasite Immunology 4, 3345.Google Scholar
Jenkins, P., Dixon, J. B., Ross, G. & Cox, D. A. (1986). Echinococcus granulosus: changes in the transformational behaviour of murine lymph node cells during early infection. Annals of Tropical Medicine and Parasitology 80, 43–7.CrossRefGoogle ScholarPubMed
Jenkins, P., Dixon, J. B., Rakha, N. K. & Carter, S. D. (1990). Regulation of macrophage-mediated larvicidal activity in Echinococcus granulosus and Mesocestoides corti (Cestoda) infection in mice. Parasitology 100, 309–15.Google Scholar
Johnson, K. S., Harrison, G. B. L., Lightowlers, M. W., O'hoy, K. I., Cougle, W. G., Dempster, R. P., Lawrence, S. B., Vinton, J. G., Heath, D. D. & Rickard, M. D. (1989). Vaccination against ovine cysticercosis using a defined recombinant antigen. Nature, London 338, 585–7.CrossRefGoogle ScholarPubMed
Johnstone, A. & Thorpe, R. (1982). Immunochemistry in Practice. Oxford: Blackwell Scientific Publications.Google Scholar
Judson, D. G., Dixon, J. B., Skerritt, G. C. & Stallbaumer, M. (1984). Mitogenic effect of Coenurus cerebralis cyst fluid. Research in Veterinary Science 37, 128.CrossRefGoogle ScholarPubMed
Judson, D. G., Dixon, J. B., Clarkson, M. J. & Pritchard, J. (1985). Ovine hydatidosis: some immunological characteristics of the seronegative host. Parasitology 91, 349–57.CrossRefGoogle ScholarPubMed
Judson, D. G., Dixon, J. B. & Skerritt, G. C. (1987). Occurrence and biochemical characteristics of cestode lymphocyte mitogens. Parasitology 94, 151–60.Google Scholar
Julius, M. H., Simpson, E. & Herzenberg, L. A. (1973). A rapid method for isolation of functional thymus-derived murine lymphocytes. European Journal of Immunology 3, 645–9.CrossRefGoogle ScholarPubMed
Kunkel, S. L., Chensue, S. W., Plewa, M. & Higashi, G. I. (1984). Macrophage function in the Schistosoma mansoni egg-induced pulmonary granuloma: role of arachidonic acid metabolites in macrophage Ia antigen expression. American Journal of Pathology 114, 240–9.Google ScholarPubMed
Leid, R. W., Grant, R. F. & Suquet, C. M. (1987). Inhibition of equine neutrophil chemotaxis and chemokinesis by Taenia taeniformis proteinase inhibitor, Taeniastatin. Parasite Immunology 9, 105204.CrossRefGoogle Scholar
Ly, I. A. & Mishell, R. I. (1974). Separation of mouse spleen cells by passage through columns of Sephadex-G10. Journal of Immunological Methods 5, 239–47.CrossRefGoogle Scholar
Rakha, N. K., Dixon, J. B., Carter, S. D., Craig, P. S., Jenkins, P. & Folkard, S. (1991 b). Echinococcus multilocularis antigens modify accessory cell functions of macrophages. Immunology (in the Press).Google Scholar
Rakha, N. K., Dixon, J. B., Skerritt, G. C., Carter, S. D., Jenkins, P. & Marshall-Clarke, S. (1991 a). Lymphoreticular responses to metacestodes: Taenia multiceps (Cestoda) can modify interaction between accessory cells and responder cells during lymphocyte activation. Parasitology 102, 133–40.Google Scholar
Riley, E. M., Dixon, J. B., Jenkins, P. & Ross, G. (1986). Echinococcus granulosus infection in mice: host responses during primary and secondary infection. Parasitology 92, 391403.CrossRefGoogle ScholarPubMed
Riley, E. M. & Dixon, J. B. (1987). Experimental Echinococcus granulosus infection in mice: immunocytochemical analysis of lymphocyte populations in local lymphoid organs during early infection. Parasitology 94, 523–32.Google Scholar
Sealey, M., Ramos, C., Willms, K. & Ortiz-Ortiz, L. (1981). Taenia solium: mitogenic effect of larval extracts on murine B lymphocytes. Parasite Immunology 3, 299309.Google Scholar
Siracusano, A., Teggi, A., Quintieri, F., Notargiacomo, S., De Rosa, F. & Vicari, G. (1988). Cellular immune responses of hydatid patients to Echinococcus granulosus antigens. Clinical and Experimental Immunology 72, 400–5.Google ScholarPubMed
Skerrit, G. C. & Stallbaumer, M. F. (1984). Diagnosis and treatment of coenurosis (gid) in sheep. Veterinary Record 115, 399403.Google Scholar
Treves, S. & Ali-Khan, Z. (1984). Characterization of the inflammatory cells in progressing tumor-like alveolar hydatid cyst. 2. Cell surface receptors, endocytosed immune complexes and lysosomal enzyme content. Tropenmedizin und Parasitologie 35, 231–6.Google Scholar
Tse, H. Y., Schwartz, R. H. & Paul, W. E. (1982). Cell-cell interactions in the T cell proliferative response. 1. Analysis of the cell types involved and evidence for non-specific T cell recruitment. Journal of Immunology 125, 491500.Google Scholar
Verster, A. & Tustin, R. C. (1987). Immunisation of sheep against the larval stage of Taenia multiceps. Onderstepoort Journal of Veterinary Research 54, 103–5.Google Scholar
Vuitton, D. A., Bresson-Hadni, S., Laroche, L., Kaiserlian, D., Guerret-Stocker, S., Bresson, J. L. & Gillet, M. (1989). Cellular immune response in Echinococcus multilocularis infection in humans. II. Natural killer cell activity and cell subpopulations in the blood and in the periparasitic granuloma of patients with alveolar echinococcosis. Clinical and Experimental Immunology 78, 6774.Google Scholar
Vuitton, D. A., Lassegue, A., Miguet, J. P., Herve, P., Barale, T., Seilles, E. & Capron, A. (1984). Humoral and cellular immunity in patients with hepatic alveolar echinococcosis. A 2 years follow up with and without flubendazole treatment. Parasite Immunology 6, 329–40.Google Scholar
Yusuf, I. N., Fraya, G. B. & Malakian, A. H. (1975). Echinococcus granulosus: host lymphocyte transformation by parasite antigens. Experimental Parasitology 38, 30–7.Google Scholar