Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T00:54:47.340Z Has data issue: false hasContentIssue false

A minimal medium for the growth of Plasmodium knowlesi in dilution cultures

Published online by Cambridge University Press:  06 April 2009

P. I. Trigg
Affiliation:
Division of Parasitology, National Institute for Medical Research, Mill Hill, London, N.W.7
W. E. Gutteridge
Affiliation:
Division of Parasitology, National Institute for Medical Research, Mill Hill, London, N.W.7

Extract

A dilution medium for the cultivation in vitro of the erythrocytic stages of P. knowlesi has been simplified to contain the following: a balanced salt solution, glucose, isoleucine, methionine, adenosine, p-aminobenzoic acid, biotin and calcium pantothenate. The medium, in the presence of plasma gave better results than the Harvard medium for the growth of P. knowlesi during one asexual cycle and also allowed the subculture of the parasites through three asexual cycles before a reduction in the number of parasites was observed.

We should like to thank Dr F. Hawking and Dr K. N. Brown for their advice and Mr T. J. Scott-Finnigan for technical assistance. One of us (P.I.T.) received financial assistance from the World Health Organization.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ball, E.G., Anfinsen, C. B., Geiman, Q. M., McKee, R. W. & Ormsbee, R. A. (1945). In vitro growth and multiplication of the malarial parasite, Plasmodium knowlesi. Science 101, 542–4.CrossRefGoogle Scholar
Bennett, T. P. & Trager, W. (1967). Pantothenic acid metabolism during avian malaria infection: Pantothenate kinase activity in duck erythrocytes and in Plasmodium lophurae. Journal of Protozoology 14, 214–16.CrossRefGoogle ScholarPubMed
Brundage, W. G., Hyland, C. M. & Dimopoullos, G. T. (1969). In vitro biosynthesis of lipids in blood from ducks infected with Plasmodium lophurae. American Journal of Tropical Medicine and Hygiene 18, 657–61.CrossRefGoogle ScholarPubMed
Büngener, W. & Nielsen, G. (1967). Nukleinsäurenstoffwechsel bei experimenteller malaria 1. Untersuchungen über den einbau von thymidin, uridin und adenosin in malariaparasiten (Plasmodium berghei und Plasmodium vinckei). Zeitschrift für Tropenmedizin und Parasitologie 18, 456–62.Google ScholarPubMed
Büngener, W. & Nielsen, G. (1968). Nukleinsäurenstoffwcchsel bei experimenteller malaria 2. Einbau von adenosin und hypoxanthin in die nukleinsäuren von malariaparasiten (Plasmodium berghei und Plasmodium vinckei). Zeitschrift für Tropenmedizin und Parasitologie 19, 185–97.Google ScholarPubMed
Büngener, W. & Nielsen, G. (1969). Nukleinsäurenstoffwechsel bei experimenteller malaria 3. Einbau von adenin aus dem adeninnukleotidpool der erythrozyten in die nukleinsäuren von malariaparasiten (Plasmodium vinckei) in vivo. Zeitschrift für Tropenmedizin und Parasitologie 20, 6773.Google ScholarPubMed
Cenedella, R. J. (1968). Lipid synthesis from glucose carbon by Plasmodium berghei, in vitro. American Journal of Tropical Medicine and Hygiene 17, 680–4.CrossRefGoogle Scholar
Fulton, J. D. & Grant, P. T. (1956). The sulphur requirements of the erythrocytic form of Plasmodium knowlesi. Biochemical Journal 63, 274–82.CrossRefGoogle Scholar
Geiman, Q. M., Siddiqui, W. A. & Schnell, J. V. (1966). In vitro studies on erythrocytic stages of Plasmodia: medium improvement and results with seven species of malarial parasite. Military Medicine 131 (Suppl.) 1015–25.CrossRefGoogle Scholar
Goodman, D. S. (1958 a). The interaction of human erythrocytes with sodium palmitate. Journal of Clinical Investigation 37, 1729–35.CrossRefGoogle ScholarPubMed
Goodman, D. S. (1958 b). The interaction of human serum albumin with long-chain fatty acid anions. Journal of the American Chemical Society 80, 3892–8.CrossRefGoogle Scholar
Gutteridge, W. E. & Trigg, P. I. (1970). Incorporation of radioactive precursors into DNA and RNA of Plasmodium knowlesi in vitro. Journal of Protozoology 17, 8996.CrossRefGoogle ScholarPubMed
Guttierrez, J. (1966). Effect of the antimalarial chloroquine on the phospholipid metabolism of avian malaria and heart tissue. American Journal of Tropical Medicine and Hygiene 15, 818–22.CrossRefGoogle Scholar
Lowy, B. A., Jaffé, E. R., Vanderhoff, G. A., Crook, L. & London, I. M. (1958). The metabolism of purine nucleosides by the human erythrocyte in vitro. Journal of Biological Chemistry 230, 409–19.CrossRefGoogle Scholar
McKee, R. W. (1951). Biochemistry of Plasmodium and the influence of antimalarials. In Biochemistry and Physiology of Protozoa, Vol. 1 pp. 251322. Ed. Lwoff, A.. New York: Academic Press.CrossRefGoogle Scholar
McKee, R. W. & Geiman, Q. M. (1948). Methionine in the growth of the malarial parasite Plasmodium knowlesi. Federation Proceedings 7, 172.Google ScholarPubMed
Matsuda, G., Maita, T., Takei, H., Ota, H., Yamaguchi, M., Miyauchi, T. & Migita, M. (1968). The primary structure of adult hemoglobin from Macaca mulatta monkey. Japanese Journal of Biochemistry, 20, 279–82.CrossRefGoogle Scholar
Moulder, J. W. (1962). The Biochemistry of Intracellular Parasitism. Chicago: University Chicago Press.Google Scholar
Polet, H. & Conrad, M. E. (1969). In vitro studies on the amino acid metabolism of Plasmodium knowlesi and the antiplasmodial effects of the isoleucine antagonists. Military Medicine 134 (Suppl.) 939–44.CrossRefGoogle ScholarPubMed
Sherman, I. W. & Ting, I. P. (1968). Carbon dioxide fixation in malaria. II. Plasmodium knowlesi (monkey malaria). Comparative Biochemistry and Physiology 24, 639–42.CrossRefGoogle ScholarPubMed
Siddiqui, W. A., Schnell, J. V. & Geiman, Q. M. (1967). Stearic acid as plasma replacement for intracellular in vitro culture of Plasmodium knowlesi. Science 156, 1623–5.CrossRefGoogle ScholarPubMed
Slddiqui, W. A., Sohnell, J. V. & Geiman, Q. M. (1969). Nutritional requirements for in vitro cultivation of a simian malarial parasite, Plasmodium knowlesi. Military Medicine 134 (Suppl.) 929–38.Google Scholar
Trager, W. (1943). Further studies on the survival and development in vitro of a malarial parasite. Journal of Experimental Medicine 77, 411–20.CrossRefGoogle ScholarPubMed
Trager, W. (1966). Coenzyme A and the antimalarial action in vitro of antipantothenate against Plasmodium lophurae, P. coatneyi and P. falciparum. Transactions of the New York Academy of Sciences, Series II 28, 1094–108.CrossRefGoogle Scholar
Trigg, P. I. (1968 a). A new continuous perfusion technique for the cultivation of malaria parasites in vitro. Transactions of the Royal Society of Tropical Medicine and Hygiene 62, 371–8.CrossRefGoogle Scholar
Trigg, P. I. (1968 b). Sterol metabolism of Plasmodium knowlesi in vitro. Annals of Tropical Medicine and Parasitology 62, 481–7.CrossRefGoogle Scholar
Trigg, P. I. (1969 a). The use of proprietary tissue-culture media for the cultivation in vitro of the erythrocytic stages of Plasmodium knowlesi. Parasitology 59, 925–35.CrossRefGoogle ScholarPubMed
Trigg, P. I. (1969 b). Some factors affecting the cultivation in vitro of the erythrocytic stages of Plasmodium knowlesi. Parasitology 59, 915–24.CrossRefGoogle ScholarPubMed
Walsh, C. J. & Sherman, I. W. (1968). Purine and pyrimidine synthesis by the avian malaria parasite Plasmodium lophurae. Journal of Protozoology 15, 763–70.CrossRefGoogle ScholarPubMed