Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T00:16:34.584Z Has data issue: false hasContentIssue false

Microtubular organization visualized by immunofluorescence microscopy during erythrocytic schizogony in Plasmodium falciparum and investigation of post-translational modifications of parasite tubulin

Published online by Cambridge University Press:  06 April 2009

M. Read
Affiliation:
Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, UK
T. Sherwin
Affiliation:
Department of Biochemistry and Molecular Biology, The Medical School, University of Manchester, Manchester M13 9PT, UK
S. P. Holloway
Affiliation:
Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, UK
K. Gull
Affiliation:
Department of Biochemistry and Molecular Biology, The Medical School, University of Manchester, Manchester M13 9PT, UK
J. E. Hyde*
Affiliation:
Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, UK
*
*Reprint requests to Dr J. E. Hyde, Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology (UMIST), P.O. Box 88, Manchester M60 1QD, UK.

Summary

We describe a novel procedure for the immunofluorescent investigation of Plasmodium falciparum. This has allowed us to visualize clearly microtubular structures and their changing conformation through the erythrocytic cell-cycle, to the stage of cytodifferentiation leading to merozoite release. The images of spindle development we observed, together with an analysis of nuclear body numbers in large numbers of parasites, indicate that there is an apparent asynchrony in chromosomal multiplication within a single parasite. Using antibodies specific for post-translational modification of α- tubulin, we also demonstrate that the C-terminal tyrosine-containing epitope of P. falciparum α-tubulin I is similar to that of other organisms. Lysine-40 in the same molecule, a target for highly specific in vivo acetylation in some organisms, is unmodified in the blood stages we examined here. After in vitro acetylation of this residue, however, the epitope to which it contributes was recognized by antibody, showing that the conformation of this part of the molecule is also conserved, despite a lack of primary sequence homology immediately downstream of the target lysine residue.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M. & Beaudoin, R. (1968). Studies on nuclear division of a malarial parasite under pyrimethamine treatment. Journal of Cell Biology 39, 749–54.CrossRefGoogle ScholarPubMed
Aikawa, M., Sterling, C. R. & Rabbege, J. (1972). Cytochemistry of the nucleus of malarial parasites. Proceedings of the Helminthological Society of Washington 39, 174–94.Google Scholar
Birkett, C. R., Foster, K. E., Johnson, L. & Gull, K. (1985). Use of monoclonal antibodies to analyse the expression of a multitubulin family. FEBS Letters 187, 211–18.CrossRefGoogle ScholarPubMed
Burns, R. (1987). Tubulin's terminal tyrosine. Nature, London 327, 103–4.CrossRefGoogle ScholarPubMed
Canning, E. U. & Sinden, R. E. (1973). The organization of the ookinete and observations on nuclear division in oocysts of Plasmodium berghei. Parasitology 67, 2940.CrossRefGoogle ScholarPubMed
Cleveland, D. W. & Sullivan, K. F. (1985). Molecular biology and genetics of tubulin. Annual Reviews of Biochemistry 54, 331–65.CrossRefGoogle ScholarPubMed
Delves, C. J., Ridley, R., Goman, M., Holloway, S. P., Hyde, J. E. & Scaife, J. G. (1989). Cloning of the β-tubulin gene of Plasmodium falciparum. Molecular Microbiology 3, 1511–19.CrossRefGoogle ScholarPubMed
Delves, C. J., Alano, P., Ridley, R., Goman, M., Holloway, S. P., Hyde, J. E. & Scaife, J. G. (1990). Expression of α and β-tubulin genes during the asexual and sexual blood stages of Plasmodium falciparum. Molecular and Biochemical Parasitology 43, 271–8.CrossRefGoogle ScholarPubMed
Dubremetz, J. F. (1975). La genèse des mérozoïtes chez la coccidie Eimeria necatrix. Étude ultrastructurale. Journal of Protozoology 22, 7184.CrossRefGoogle Scholar
Hall, R., Osland, A., Hyde, J. E., Simmons, D. L., Hope, I. A. & Scaife, J. G. (1984). Processing, polymorphism and biological significance of p190, a major surface antigen of the erythrocytic forms of Plasmodium falciparum. Molecular and Biochemical Parasitology 11, 6180.CrossRefGoogle Scholar
Hollande, A. (1972). Le déroulement de la cryptomitose et les modalités de la ségrégation des chromatides dans quelques groupes de protozoaires. Année Biologique 11, 427–66.Google Scholar
Holloway, S. P., Sims, P. F. G., Delves, C. J., Scaife, J. G. & Hyde, J. E. (1989). Isolation of α-tubulin genes from the human malaria parasite Plasmodium falciparum: sequence analysis of α-tubulin I. Molecular Microbiology 3, 1501–10.CrossRefGoogle Scholar
Holloway, S. P., Gerousis, M., Delves, C. J., Sims, P. F. G., Scaife, J. G. & Hyde, J. E. (1990). The tubulin genes of the human malaria parasite Plasmodium falciparum, their chromosomal location and sequence analysis of the α-tubulin II gene. Molecular and Biochemical Parasitology 43, 257–70.CrossRefGoogle ScholarPubMed
Inselburg, J. & Banyal, H. S. (1984). Synthesis of DNA during the asexual cycle of Plasmodium falciparum in culture. Molecular and Biochemical Parasitology 10, 7987.CrossRefGoogle ScholarPubMed
Kilmartin, J. V., Wright, B. & Milstein, C. (1982). Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. Journal of Cell Biology 93, 576–82.CrossRefGoogle ScholarPubMed
Kumar, N. & Flavin, M. (1981). Preferential action of a brain detyrosinolating carboxypeptidase on polymerized tubulin. Journal of Biological Chemistry 256, 7678–86.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Lambros, C. & Vanderberg, J. P. (1979). Synchronisation of Plasmodium falciparum erythrocytic stages in culture. Journal of Parasitology 65, 418–20.CrossRefGoogle ScholarPubMed
Ledizet, M. & Piperno, G. (1987). Identification of an acetylation site of Chlamydomonas α-tubulin. Proceedings of the National Academy of Sciences, USA 84, 5720–4.CrossRefGoogle ScholarPubMed
Macrae, T. H. & Langdon, C. M. (1989). Tubulin synthesis, structure, and function: what are the relationships? Biochemistry and Cell Biology 67, 770–90.CrossRefGoogle ScholarPubMed
Read, M. & Hyde, J. E. (1988). The use of human plasmas and plasma-depleted blood fractions in the in vitro cultivation of the malaria parasite Plasmodium falciparum. Tropical Medicine and Parasitology 39, 43–4.Google ScholarPubMed
Schrével, J., Asfaux-Foucher, G. & Bafort, J. M. (1977). Étude ultrastructurale des mitoses multiples au cours de la sporogonie du Plasmodium b. berghei. Journal of Ultrastructure Research 59, 332–50.Google Scholar
Sinden, R. E. (1978). Cell biology. In Rodent Malaria (ed. Killick-Kendrick, R. & Peters, W.), pp. 85168. London: Academic Press.Google Scholar
Sinden, R. E., Canning, E. U., Bray, R. S. & Smalley, M. E. (1978). Gametocyte and gamete development in Plasmodium falciparum. Proceedings of the Royal Society of London, 201B, 375–99.Google ScholarPubMed
Sinden, R. E., Canning, E. U. & Spain, B. J. (1976). Gametogenesis and fertilization in Plasmodium yoelii nigeriensis: a transmission electron microscope study. Proceedings of the Royal Society of London, 193B, 5576.Google ScholarPubMed
Vickerman, K. & Cox, F. E. G. (1967). Merozoite formation in the erythrocytic stages of the malaria parasite Plasmodium vinckei. Transactions of the Royal Society of Tropical Medicine and Hygiene 61, 303–12.CrossRefGoogle Scholar
Vivier, E. & Vickerman, K. (1974). Divisions nucléaires chez les protozoaires. In Actualités Protozoologiques, vol. 1 (ed. de Puytorac, P. & Grain, J.), pp. 161–77. Université de Clermont.Google Scholar
Woods, A., Sherwin, T., Sasse, R., Macrae, T. H., Baines, A. J. & Gull, K. (1989): Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. Journal of Cell Science 93, 491500.CrossRefGoogle ScholarPubMed