Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T17:16:52.438Z Has data issue: false hasContentIssue false

Membrane structure and function of malaria parasites and the infected erythrocyte

Published online by Cambridge University Press:  06 April 2009

Irwin W. Sherman
Affiliation:
Department of Biology, University of California, Riverside, California 92521

Summary

According to the World Health Organization the global estimate of malaria is over 200 million infections, the majority of which are caused by the most life-threatening species, Plasmodium falciparum (Report of the Steering Committees of the Scientific Working Groups on Malaria, World Health Organization, June 1983). The causative agent of the disease, the malarial parasite, requires two hosts: a blood-sucking mosquito and a blood-containing vertebrate. Commonly, infection of the vertebrate begins when an infected mosquito bites a suitable vertebrate and injects minute sporozoites into the bloodstream. Within 30 mm the introduced sporozoites leave the bloodstream and enter parenchymal cells of the liver (mammals) or endothelial cells (birds). In these sites the parasite undergoes asexual multiplication (= exo-erythrocytic schizogony) producing daughter progeny called merozoites. The exo-erythrocytic merozoites are released from the tissues into the circulation where they invade red blood cells. Within an erythrocyte the merozoite undergoes asexual multiplication (= erythrocytic schizogony) producing a substantial number of merozoites. The erythrocyte lyses, merozoites are released, and invasion of another erythrocyte may then take place. The synchronous rupture of the red cell and merozoite release is marked by the periodic fever–chill cycles so characteristic of the malarial infection. Some merozoites continue to reinvade other erythrocytes and multiply by asexual means, whereas others enter erythrocytes and differentiate into sexual stages, male or female gametocytes. When a suitable mosquito feeds on an infected vertebrate gametocytes are ingested and the sexual cycle of development is initiated. In the mosquito stomach the gametocytes transform into gametes, fertilization takes place, the resultant worm-like zygote penetrates the cells of the mosquito gut and comes to lie on the outer surface of the stomach. Here each zygote forms a cyst-like body, the oocyst, within which thousands of sporozoites are produced by asexual multiplication. When the swollen oocysts burst, sporozoites are freed and these make their way to the salivary gland. At the next blood feeding the mosquito injects the infective sporozoites and the life-cycle is completed.

Type
Trends and Perspectives
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M. (1977). Variations in structure and function during the life cycle of malarial parasites. Bulletin of the World Health Organization 55, 139–56.Google ScholarPubMed
Aikawa, M., Cochkane, A., Nussenzweio, R. & Rabbeoe, J. (1979). Freeze–fracture study of malaria Sporozoites: antibody induced changes of the pellicular membrane. Journal of Protozoology 26, 273–9CrossRefGoogle ScholarPubMed
Aikawa, M. & Miller, L. (1983). Structural alterations of the erythrocyte membrane during malarial Parasite invasion and intraerythrocytic development. Ciba Foundation Symposium 94, 4559.Google ScholarPubMed
Aikawa, M., Miller, L. & Rabbege, J. (1975). Caveola–vesicle complexes in the plasmalemma of Erythrocytes infected by Plasmodium vivax and P. Cynomolgi. American Journal of Pathology 79, 285300.Google ScholarPubMed
Aikawa, M. & Seed, T. M. (1980). Morphology of Plasmodia. In Malaria, vol. 1 (ed. Kreier, J. P.), Pp. 285345. New York: Academic Press.Google Scholar
Aikawa, M., Suzuki, M. & Gutierrez, Y. (1980). Pathology of malaria. In Malaria, vol. 2 (ed. Kreier, J. P.), pp. 47102. New York: Academic Press.Google Scholar
Alby, S., Barnwell, J., Daniel, W. & Howard, R. (1984). Identification of parasite proteins in a Membrane preparation enriched for the surface embrane of erythrocytes infected with Plas– Modium knowlesi. Molecular and Biochemical Parasitology 12, 6984.Google Scholar
Allred, D. & Sherman, I. W. (1983). Developmental modulation of protein synthetic patterns by The human malarial parasite Plasmodium falciparum. Canadian Journal of Biochemistry and Cell Biology 61, 1304–14.CrossRefGoogle ScholarPubMed
Allred, D. R., Sterling, C. & Morse, P. (1983). Increased fluidity of Plasmodium berghei–infected Mouse red blood cell membranes detected by electron spin resonance spectroscopy. Molecular and Biochemical Parasitology 7, 2739.CrossRefGoogle ScholarPubMed
Aminoff, D., Bell, W., Full–ton, I. & Inoerbriosten, N. (1976). Effect of sialidase on the viability Of erythrocytes in the circulation. American Journal of Haematology 1, 419–32.CrossRefGoogle Scholar
Aminoff, D., vordeb Bruegge, W., Bell, W., Sabpolis, K. & Williams, R. (1977). Role of sialic Acid in survival of erythrocytes in circulation. Interaction of neuraminidase–treated and untreated Erythrocytes with spleen and liver at cellular level. Proceedings of the National Academy of Sciences, USA 74, 1521–4.CrossRefGoogle ScholarPubMed
Bannister, L., Butcher, G. & Mitchell, G. (1977). Recent advances in understanding the invasion Of erythrocytes by tnerozoites of Plasmodium knowlesi. Bulletin of the World Health Organization 55, 163–70.Google ScholarPubMed
Barnwell, J. W., Howard, R. & Miller, L. (1982). Altered expression of Plasmodium knowlesi Variant antigen on the erythrocyte membrane in splenectomized rhesus monkeys. Journal of Immunology 128, 224–6.CrossRefGoogle ScholarPubMed
Barnwell, J. W., Howard, R.Coon, H. G. & Miller, L. (1983). Splenic requirement for antigenic Variation and expression of the variant antigen on the erythrocyte membrane in cloned Plasmodium Knowlesi malaria. Infection and Immunity 40, 985–94.CrossRefGoogle ScholarPubMed
Beach, D. H., Sherman, I. & Holz, G. (1977). Lipids of Plasmodium lophurae, and of erythrocytes And plasmas of normal and P. Lophurae–infected Pekin ducklings. Journal of Parasitology 63, 6275.CrossRefGoogle ScholarPubMed
Bjerrum, O., Hawkins, M., Swanson, P., Griffin, M. & Lorand, L. (1981). An immunochemical Approach for the analysis of membrane protein alterations in Ca2+ loaded human erythrocytes Journal of Supramolecular Structure and Cellular Biochemistry 16, 289301.CrossRefGoogle ScholarPubMed
Borochov, H., Abbott, R., Schachter, D. & Schinitzky, M. (1979). Modulation of erythrocyte Membrane proteins by membrane cholesterol and lipid fluidity. Biochemistry 18, 251–5.CrossRefGoogle ScholarPubMed
Boyle, D. B., March, J., Newbold, C. & Brown, K. N. (1983 a). Parasite polypeptides lost during Schizogony and erythrocyte invasion by the malaria parasites. Molecular and Biochemical Parasitology 7, 918.CrossRefGoogle ScholarPubMed
Boyle, D. B., Newbold, C., Wilson, R. J. & Brown, K. N. (1983 b). Intraerythrocytic development And antigenicity of Plasmodium falciparum and comparison with simian and rodent malaria Parasites. Molecular and Biochemical Parasitology 9, 227240.CrossRefGoogle ScholarPubMed
Brown, K. N. (1977). Antigenic variation in malaria. In Immunity to Blood Parasites of Animals and Man (ed. Miller, L., Pino, J. A. and Mckelvey, J. A. Jr), pp. 525. New York: Plenum Press.CrossRefGoogle Scholar
Brown, K. N. & Hockley, D. J. (1966). Immunity to protozoa. Antigenic variation in trypanosomiasis And malaria. Parasitology 56, 6P.Google Scholar
Cabantchik, Z. L., Balshin, M., Brever, W., Markus, H. & Rothstein, A. (1975). A comparison Of intact human red blood cells and resealed and leaky ghosts with respect to their interactions with Surface labeling agents and proteolytic enzymes. Biochimica et Biophysica Ada 382, 621–33.CrossRefGoogle ScholarPubMed
Chaimanee, P. & Yuthavong, Y. (1979). Phosphorylation of membrane proteins from Plasmodium Berghei–mfected red cells. Biochemical and Biophysical Research Communications 87, 953–9.CrossRefGoogle ScholarPubMed
Cooper, R. A. (1977). Abnormalities of cell membrane fluidity in the pathogenesis of disease. New England Journal of Medicine 297, 371–7.Google ScholarPubMed
Cranston, H., Boylan, C., Carroll, G., Sutera, S., Williamson, J., Gluzman, I. & Krogstad, D. (1984). Plasmodium falciparum maturation bolishes physiologic red cell deformability. Science 223, 400–2.CrossRefGoogle ScholarPubMed
David, P., Hadley, T., Aikawa, M. & Miller, L. (1984). Processing of a major parasite surface Glycoprotein occurs during the ultimate stages of differentiation in Plasmodium knowlesi malaria. Molecular and Biochemical Parasitology 11, 267–82.CrossRefGoogle Scholar
David, P., Hommel, M., Benichou, J. C., Eisen, H. & Pereira da silva, L. (1978). Isolation of Malaria merozoite: Release of Plasmodium chabaudi merozoites from schizonts bound to immobilized Concanavalin A. Proceedings of the National Academy of Sciences, USA 75, 5081–4.CrossRefGoogle ScholarPubMed
David, P., Hommel, M., Miller, L., Udeinya, I. & Oligino, L. (1983). Parasite sequestration in Plasmodium falciparum malaria. Spleen and antibody modulation of cytoadherence of infected Erythrocytes. Proceedings of the National Academy of Science, USA 80, 5075–9.CrossRefGoogle ScholarPubMed
David, P. H, Hommel, M. & Oligino, L. (1981). Interactions of Plasmodium falciparum infected Erythrocytes with ligand–coated agarose beads. Molecular and Biochemical Parasitology 4, 195204.CrossRefGoogle ScholarPubMed
de Silveika, J. F., Falanga, P. & Pereira da silva, L. (1984). Identification of surface membrane Proteins and surface membrane antigens of Plasmodium chabaudi merozoites. Molecular and Biochemical Parasitology 10, 1123.Google Scholar
Deans, J., Alderson, T., Thomas, A., Mitchell, G., Lennox, E. & Cohen, S. (1982). Rat monoclonal Antibodies which inhibit the in vitro multiplication of Plasmodium knowlesi. Clinical and Experimental Immunology 49, 297309.Google ScholarPubMed
Deans, J. A., Dennis, E. & Cohen, S. (1978). Antigenic analysis of sequential erythrocytic stages of Plasmodium knowlesi. Parasitology 77, 333–44.CrossRefGoogle ScholarPubMed
Deans, J., Thomas, A. & Cohen, S. (1983). Stage–specific protein synthesis by asexual blood stage Parasites of Plasmodium knowlesi. olecular and Biochemical Parasitology 8, 3144.CrossRefGoogle ScholarPubMed
Eaton, M. D. (1938). The agglutination of Plasmodium knowlesi by immune serum. Journal of Experimental Medicine 67, 857–70.CrossRefGoogle ScholarPubMed
Eisen, H. (1977). Purification of intracellular forms of Plasmodium chabaudi and their interactions With the erythrocyte membrane and serum albumin. Bulletin of the World Health Organization 55, 333–8.Google ScholarPubMed
Epstein, N., Miller, L., Kaushal, D., Udeinya, I., Rener, J., Howard, R., Asofsky, R., Aikawa, M. & Hess, R. (1981). Monoclonal antibodies against a specific surface determinant on malarial (Plasmodium knowlesi) merozoites block erythrocyte invasion. Journal of Immunology 127, 212–17.CrossRefGoogle ScholarPubMed
Etkin, N. L. & Eaton, J. W. (1975). Malaria induced erythrocyte oxidant sensitivity. In Erythrocyte Structure and Metabolism (ed. Brewer, G. J.), pp. 219–32. New York: A. Liss Inc.Google Scholar
Fairfield, A., Meshnick, S. & Eaton, J. (1983). Malaria parasites adopt host ceil superoxide Dismutase. Science 221, 764–6.CrossRefGoogle Scholar
Falanga, P., de silveira, J. & Pereira da Silva, L. (1982). Proteins synthesized during specific Stages of the schizogonic cycle and conserved in the merozoites of Plasmodium chabaudi. Molecular And Biochemical Parasitology 6, 5565.CrossRefGoogle ScholarPubMed
Freeman, R. E. & Holder, A. A. (1983). Surface antigens of malaria merozoites: a high molecular Weight precursor is processed to an 82000 mol. Wt form expressed on the surface of Plasmodium Falciparum merozoites. Journal of Experimental Medicine 158, 1647–53.CrossRefGoogle Scholar
Friedman, M., Roth, E., Nagel, R. & Tracer, W. (1979). Plasmodium falciparum: Physiological Interactions with the human sickle cell. Experimental Parasitology 47, 7380.CrossRefGoogle ScholarPubMed
Gahmberg, C. G. & Anderson, L. C. (1977). Selective radioactive labeling of cell surface sialoglyco–proteins by periodate–tritiated borohydride. Journal of Biological Chemistry 252, 5888–94.CrossRefGoogle ScholarPubMed
Gazitt, Y., Loyter, A., Reichler, Y. & Ohad, I. (1976). Correlation between changes in membrane Organization and susceptibility to phospholipase C attack induced by ATP depletion of rat Erythrocytes. Biochimica et Biophysica Acta 419, 479–92.CrossRefGoogle ScholarPubMed
Goodman, S. R. & Shiffer, K. (1983). The spectrin membrane skeleton of normal and abnormal Human erythrocytes: a review. American Journal of Physiology 244, C121–41.CrossRefGoogle ScholarPubMed
Gratzer, W. B. (1983). The cytoskeleton of the red blood cell. In Muscle and Non–muscle Mobility, Vol. 2 (ed. Stracher, A.), pp. 37124. New York: Academic Press.CrossRefGoogle Scholar
Gruenberg, J., Allred, D. & Sherman, I. W. (1983). Scanning electron microscope–analysis of the Protrusions (knobs) present on the surface of Plasmodium falciparum–infected erythrocytes. Journal Of Cell Biology 97, 795802.CrossRefGoogle ScholarPubMed
Gruenberg, J. & Sherman, I. W. (1983). Isolation and characterization of the plasma membrane of Human erythrocytes infected with the malarial parasite Plasmodium falciparum. Proceedings of the National Academy of Science, USA 80, 1087–91.CrossRefGoogle ScholarPubMed
Gupta, C. M., Alam, A., Mathur, P. & Dutta, G. (1982). A new look at non–parasitized red cells of Malaria–infected monkeys. Nature, London 299, 259–61.CrossRefGoogle Scholar
Gupta, C. M. & Mishra, G. C. (1981). Transbilayer phospholipid asymmetry in Plasmodium knowlesi– Infected host cell membrane. Science 212, 1047–9.CrossRefGoogle ScholarPubMed
Hadley, T. J., Leech, J., Green, T., Daniel, W., Wahlgren, M., Miller, L. & Howard, R. (1983). A comparison of knobby (K +) and knobless (K –) parasites from two strains of Plasmodium Falciparum. Molecular and Biochemical Parasitology 9, 271–8.CrossRefGoogle ScholarPubMed
Haest, C. W. M., Plasa, G. & Deuticke, B. (1981). Selective removal of lipids from the outer Membrane layer of human erythrocytes without hemolysis. Biochimica et Biophysica Ada 649, 701–8.CrossRefGoogle ScholarPubMed
Hebbel, R., Eaton, J., Steinberg, M. & White, J. (1982). Erythrocyte/endothelial interactions in The pathogenesis of sickle cell disease: A ‘real logical’ assessment. Blood Cells 8, 163–73.Google ScholarPubMed
Hebbel, R., Yamada, O., Moldow, C., Jacob, H., White, J. & Eaton, J. (1980). Abnormal adherence Of sickle erythrocytes to cultured vascular endothelium. Journal of Clinical Investigation 65, 154–60.CrossRefGoogle ScholarPubMed
Hochstein, P., Jain, S. & Rice–evans, C. (1981). The physiological significance of oxidative Perturbations in erythrocyte membrane lipids and proteins. In The Red Cell: Fifth Ann Arbor Conference (ed. Brewer, G.), pp. 449–159. New York: A. Liss Inc.Google Scholar
Holder, A. A., Freeman, R. & Newbold, C. (1983). Serological cross–reaction between high Molecular weight proteins and synthesized in blood schizonts of Plasmodium yoelii, Plasmodium Chabaudi and Plasmodium falciparum. Molecular and Biochemical Parasitology 9, 191–6.CrossRefGoogle ScholarPubMed
Hollingdale, M., Zavala, F., Nussenzweio, R. & Nussenzweio, V. (1982). Antibodies to the Protective antigen of Plasmodium berghei sporozoites prevent entry into cultured cells. Journal of Immunology 128, 1929–30.CrossRefGoogle Scholar
Holz, G. G. (1977). Lipids and the malarial parasite. Bulletin of the World Health Organization 55, 237–48.Google ScholarPubMed
Hommel, M. & David, P. H. (1981). Plasmodium hnowlesi variant antigens are found on schizont Infected erythrocytes but not on merozoites. Infection and Immunity 33, 275–84.CrossRefGoogle Scholar
Hommel, M., David, P. & Oligino, L. (1983). Surface alterations of erythrocytes in Plasmodium Falciparum malaria. I. Antigenic variation, antigenic diversity, and the role of the spleen. Journal Of Experimental Medicine 157, 1137–48.CrossRefGoogle ScholarPubMed
Howard, R. J. (1982). Alterations in the surface membrane of red blood cells during malaria. Immunological Reviews 61, 67107.CrossRefGoogle ScholarPubMed
Howard, R. J. & Barnwell, J. W. (1984). Roles of surface antigens on malaria infected red blood Cells in evasion of immunity. Contemporary Topics in Immunobiology 12, 127200.Google ScholarPubMed
Howard, R. J., Barnwell, J. & Kao, V. (1982 c). Tritiation of protein antigens of Plasmodium Knowlesi schizont–infected erythrocytes using pyridoxal phosphate–sodium boro [33H]hydride. Molecular and Biochemical Parasitology 6, 369–88.CrossRefGoogle Scholar
Howard, R. J., Barnwell, J. & kao, V. (1983). Antigenic variation in Plasmodium knowlesi malaria: Identification of the variant antigen on infected erythrocytes (antibody–mediated agglutination/Cloned parasites/immunoprecipitation/lactoperoxidase–catalyzed radioiodination). Proceedings of The National Academy of Sciences, USA 80, 4129–33.CrossRefGoogle Scholar
Howard, R. J., Barnwell, J., Kao, V., Daniel, W. & Aley, S. (1982). Radioiodination of new Protein antigens on the surface of Plasmodium knowlesi schizont–infected erythrocytes. Molecular And Biochemical Parasitology 6, 343–67.CrossRefGoogle ScholarPubMed
Howard, R. J., Brown, G., Smith, P., Mitchell, G., Stace, J., Alpers, M., Wember, M. & Schauer, R. (1981). Studies on malaria in Papua New Guinea: comparison of the surface glycoproteins on red blood cells from infected and uninfected individuals. Parasitology 83, 357–72.CrossRefGoogle ScholarPubMed
Howard, R. J. & Day, K. P. (1981). Plasmodium berghei: Modification of sialic acid on red cells from Infected mouse blood. Experimental Parasitology 51, 95103.CrossRefGoogle ScholarPubMed
Howard, R. J. & Kao, V. (1981). Comparison of the surface membrane proteins of human and rhesus Monkey (Macaca mulatto) erythrocytes labeled with protein and glycoprotein radiolabeling probes. Comparative Biochemistry and Physiology 70B, 767–74.Google Scholar
Howard, R. J., Kaushal, D. & Carter, R. (1982 a). Plasmodium gallinaceum: Radioiodination of Parasite antigens with l,3,4,6–tetrachioro–3,6–diphenylglycoluril (lodogen): Studies with zygotes of P. gallinaceum. Journal of Protozoology 29, 114–17.CrossRefGoogle Scholar
Howard, R. J., Lyon, J., Dioos, C., Haynes, J., Leech, J., Barnwell, J., Aley, S., Aikawa, M. & Miller, L. (1984). Localization of the major Plasmodium falciparum glycoprotein on the surface Of mature intraerythrocytic trophozoites and schizonts. Molecular and Biochemical Parasitology 11, 349–62.CrossRefGoogle ScholarPubMed
Howard, R. J. & Sawyer, W. H. (1980). Changes in the membrane microviscosity of mouse red blood Cells infected with Plasmodium berghei detected using nonyl(9–anthroyloxy) fatty acid fluorescent Probes. Parasitology 80, 331–42.CrossRefGoogle Scholar
Howard, R. J., Smith, P. & Mitchell, G. (1980 a). Characterization of surface proteins and Glycoproteins on red blood cells from mice infected with hemosporidia. II. Plasmodium berghei Infections of BALB/c mice. Parasitology 81, 273–98.CrossRefGoogle Scholar
Howard, R. J., Smith, P. & Mitchell, G. (1980). Characterization of surface proteins and Glycoproteins on red blood cells from mice infected with hemosporidia. III. Plasmodium yoelii Infections of BALB/c mice. Parasitology 81, 299314.CrossRefGoogle Scholar
Hubbard, A. & Cohn, Z. A. (1976). Specific labels for cell surfaces. In Biochemical Analysis of Membranes (ed. Maddy, A.), pp. 427501. New York: Wiley.Google Scholar
Jain, S. K. (1984). The accumulation of malonyldialdehyde, a product of fatty acid peroxidation, can Disturb aminophospholipid organization in the membrane bilayer of human erythrocytes. Journal Of Biological Chemistry 259, 3391–4.CrossRefGoogle ScholarPubMed
Jancik, J., Schauer, R. & Streicher, M. (1975). Influence of membrane–bound N–acetylneuraminic acid on the survival of erythrocytes in man. Hoppe–Seyler's Zeitschrift für Physiologische Chemie 356, 1329–31.Google ScholarPubMed
Johnson, G., Allen, D., Cadman, S., Fairbank, J., White, J., Lampkin, B. & Kaplan, M. (1979). Red cell membrane polypeptide aggregates in glucose–6–phosphate dehydrogenase mutants with Chronic hemolytic disease. New England Journal of Medicine 301, 512–27.CrossRefGoogle ScholarPubMed
Kaushal, D. C., Carter, R., Howard, R. & Mcattliff, E. (1983). Characterization of antigens on Mosquito midgut stages of Plasmodium gallinaceum. I. Zygote surface antigens. Molecular and Biochemical Parasitology 8, 5370.CrossRefGoogle ScholarPubMed
Kilejian, A. (1979). Characterization of a protein correlated with the production of knob–like Protrusions on membranes of erythrocytes infected with Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 76, 4650–3.CrossRefGoogle ScholarPubMed
Kilejian, A. (1980). Stage–specific proteins and glycoproteins of Plasmodium falciparum: Identification Of antigens unique to schizonts and merozoites. Proceedings of the National Academy of Sciences, USA 77, 3695–9.CrossRefGoogle ScholarPubMed
Kilejian, A. (1981). Alterations of human erythrocyte membranes due to infection with Plasmodium Falciparum. In The Biochemistry of Parasites (ed. Slutsky, G. M.), pp. 6773. Oxford: Pergamon Press.CrossRefGoogle Scholar
Kilejian, A., Abati, A. & Tracer, W. (1977). Plasmodium falciparum and Plasmodium coatneyi: Immunogenicity of knob–like protrusions on infected erythrocyte membranes. Experimental Parasitology 42, 157–64.CrossRefGoogle ScholarPubMed
Kilejian, A., Behr, M. & Lee, Y. (1982). Comparative studies of antigens of erythrocytic and Exoerythrocytic merozoites of Plasmodium lophurae: Characterization of a surface glycoprotein from Exoerythrocytic merozoites. Journal of Parasitology 68, 1021–8.CrossRefGoogle ScholarPubMed
Kilejian, A. & Olson, J. (1979). Proteins and glycoproteins from human erythrocytes infected with Plasmodium falciparum. Bulletin of the World Health Organization 57, 101–7.Google ScholarPubMed
Königk, E. & Mihtsch, S. (1977). Plasmodium chabaudi infection of mice: specific activities of Erythrocyte membrane–associated enzymes and patterns of proteins and glycoproteins of erythrocyte Membrane preparations. Tropenmedizin und Parasitologie 28, 1722.Google ScholarPubMed
Krunokrai, J. & Yuthavong, Y. (1983). Enhanced Ca2+ uptake by mouse erythrocytes in malarial (Plasmodium berghei) infection. Molecular and Biochemical Parasitology 7, 227–36.CrossRefGoogle Scholar
Krungkhai, J. & Yuthavong, Y. (1983). Reduction of Ca2+ uptake induced by ionophore A23187 Of red cells from malaria (Plasmodium berghei) infected mice. Cell Biology International Reports 7, 237–44.CrossRefGoogle Scholar
Kumar, N. & Carter, R. (1984). Biosynthesis of target antigens of antibodies blocking transmission Of Plasmodium falciparum. Molecular and Biochemical Parasitology 13, 333–12.CrossRefGoogle ScholarPubMed
Kuypers, F., Roelofsen, B., Op Den Kamp, J. & van Deenen, L. (1984). The membrane of intact Human erythrocytes tolerates only limited changes in the fatty acid composition of its Phosphatidylcholine. Biochimica et Biophysica Acta 769, 337–47.CrossRefGoogle ScholarPubMed
Langreth, S. (1977). Electron microscope cytochemistry of host–parasite membrane. Bulletin of the World Health Organization 55, 171–8.Google ScholarPubMed
Langreth, S. G., Jensen, J., Reese, R. & Trager, W. (1978). Fine structure of human malaria in Vitro. Journal of Protozoology 25, 443–52.CrossRefGoogle ScholarPubMed
Langreth, S. G. & Reese, R. T. (1979). Antigenicity of the infected erythrocyte and merozoite surface In falciparum malaria. Journal of Experimental Medicine 150, 1241–54.CrossRefGoogle ScholarPubMed
Leech, J., Bahnwell, J., Aikawa, M., Miller, L. & Howard, R. (1984 a). Plasmodium falciparum malaria: Association of knobs on the surface of infected red cells with a histidine–rich protein and the red cell skeleton. Journal of Cell Biology 98, 1256–64.CrossRefGoogle Scholar
Leech, J., Barnwell, J., Miller, L. & Howard, R. (1984 b). Identification of a strain–specific malarial antigen exposed on the surface of Plasmodium falciparum–infected erythrocytes. Journal of Experimental Medicine 159, 1567–75.CrossRefGoogle ScholarPubMed
Leida, M. N., Mahoney, J. & Eaton, J. (1981). Intraerythrocytic plasmodial calcium metabolism. Biochemical and Biophysical Research Communications 103, 402–6.CrossRefGoogle ScholarPubMed
Lorand, L., Bjerrum, O., Hawkins, M., Lowe–Krentz, L. & Seifring, G. (1983). Degradation of transmembrane proteins in Ca2+–enriched human erythrocytes. Journal of Biological Chemistry 258, 5300–5.CrossRefGoogle ScholarPubMed
Lorand, L., Hawkins, M., Michalska, M. & Perkins, M. (1984). Radioactivity from [,35S]–methionine in P. falciparum culture becomes associated with immunoprecipitates specific for erythrocyte membrane proteins. In Malaria and the Red Cell Workshop (ed. Brewer, G.), pp. 7991. New York: A. Liss Inc.Google Scholar
Lubin, B. & Chiu, D., Bastacky, J., Roelofson, B. & Van Deenen, L. (1981). Abnormalities in membrane phospholipid organization in sickled erythrocytes. Journal of Clinical Investigation 67, 1643–9.CrossRefGoogle ScholarPubMed
Lubin, B. & Chiu, D. (1982). Membrane phospholipid organization in pathologic human erythrocytes. In Membranes and Genetic Disease, Progress in Clinical and Biological Research, vol. 97 (ed. Sheppard, J. R.), pp. 137150. New York: A. R. Liss Inc.Google Scholar
Lux, S. E. (1979). Spectrin–actin membrane skeleton of normal and abnormal red blood cells. Seminars in Hematology 16, 2151.Google ScholarPubMed
Lux, S. E. (1983). Disorders of the red cell membrane skeleton: Hereditary spherocytosis and hereditary elliptocytosis. In Metabolic Basis of Inherited Disease, 5th Edn (ed. Stanbury, J.), pp. 15731605. New York: McGraw Hill.Google Scholar
Lux, S. E. & Glader, B. E. (1981). Disorders of the red cell membrane. In Hematology of Infancy and Childhood (ed. Nathan, D. G. and Oshi, I. S.), pp. 456565. Philadelphia: Saunders.Google Scholar
Mclaken, D. J., Bannister, L., Trigg, P. & Butcher, G. (1979). Freeze fracture studies on the interaction between the malaria parasite and host erythrocyte in Plasmodium knowlesi infections. Parasitology 79, 125–39.CrossRefGoogle Scholar
Markwell, M. A. K. (1982). A new solid–state reagent to iodinate proteins. I. Conditions for the efficient labeling of antiserum. Analytical Chemistry 125, 427–32.Google ScholarPubMed
Markwell, M. A. K. & Fox, C. F. (1978). Surface specific iodination of membrane proteins of viruses and eucaryotic cells using 1,3,4,6,–tetra–chloro–3,6, diphenylglycouril. Biochemistry 17, 4807–17.CrossRefGoogle Scholar
Morrison, M., Mueller, T. & Edwards, H. (1981). Protein architecture of the erythrocyte membrane. In The Function of Red Blood Cells: International Symposium on Erythrocyte Pathobiology (ed. Wallach, D. F.), pp. 1734, New York: A. R. Liss Inc.Google Scholar
Mueller, T. J. & Morrison, M. (1981). Glycoconectin (PAS 2), a membrane attachment site for the human erythrocyte cytoskeleton. In Erythrocyte Membranes, Recent Clinical and Experimental Advances, vol. 2 (ed. Kruckeberg, W. C., Eaton, J. W. and Brewer, G. J.), pp. 95112. New York: A. R. Liss Inc.Google Scholar
Muller, C. P. & Shinitzky, M. (1981). Passive shedding of erythrocyte antigens induced by membrane rigidification. Experimental Cell Research 136, 5362.CrossRefGoogle ScholarPubMed
Nakornchai, S., Satarug, S., Potiwan, C. & Yuthavong, Y. (1980). Enhanced fusion capacity of malaria (Plasmodium berghei) infected mouse red cells. Cell Biology International Reports 4, 933–40.CrossRefGoogle ScholarPubMed
Nakornchai, S., Sathitudsahakorn, C., Chonggchirasiri, S. & Yuthavong, Y. (1983). Mechanism of enhanced fusion capacity of mouse red cells infected with Plasmodium berghei. Journal of Cell Science 63, 147–54.CrossRefGoogle ScholarPubMed
Newbold, C., Boyle, D., Smith, C. C. & Brown, K. N. (1982). Stage specific protein and nucleic acid synthesis during the asexual cycle of the rodent malaria Plasmodium chabaudi. Molecular and Biochemical Parasitology 5, 3344.CrossRefGoogle ScholarPubMed
Palek, J. (1980). Membrane protein and organization in normal and hemoglobinopathic red cells. In Texas Reports on Biology and Medicine, vol. 40 (ed. Schneider, R. G., Charache, S. and Schroeder, W. A. Jr), p. 397. Galveston, Texas: University of Texas Medical Branch at Galveston.Google Scholar
Pattanakitsakul, S. & Yuthavong, Y. (1982). Heterogeneity in filterability of erythrocytes from malaria (Plasmodium berghei) infected blood. Experientia 38, 626–8.CrossRefGoogle ScholarPubMed
Perkins, M. (1982). Surface proteins of schizont–infected erythrocytes and merozoites of Plasmodium falciparum. Molecular and Biochemical Parasitology 5, 5564.CrossRefGoogle ScholarPubMed
Perrin, L. H. & Dayal, R. (1982). Immunity to asexual stages of Plasmodium falciparum: Role of defined antigens in the humoral response. Immunological Reviews 61, 245–69.CrossRefGoogle ScholarPubMed
Perrin, L. H., Dayal, R. & Rieder, H. (1981 b). Characterization of antigens from erythrocytic stages of Plasmodium, falciparum reacting with human sera. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 163–5.CrossRefGoogle Scholar
Perrin, L. H., Ramirez, E., Lambert, P. & Miescher, P. (1981 a). Inhibition of Plasmodium falciparum growth in human erythrocytes by monoclonal antibodies. Nature, London 289, 301–3.CrossRefGoogle ScholarPubMed
Reichstein, E. & Blostein, R. (1977). Decreased iodination of the red cell surface following phospholipase C treatment (BBA 71301). Biochimica et Biophysica Acta 468, 502–6.CrossRefGoogle Scholar
Roelofson, B., van Meer, G. & Op Den Kamp, J. (1981). The lipids of red cell membranes. Scandinavian Journal of Clinical Laboratory Investigation 41 Suppl. 156, 111–15.CrossRefGoogle Scholar
Rubin, R. W. & Milikowski, C. (1978). Over two hundred polypeptides resolved from the human erythrocyte membrane. Biochimica et Biophysica Acta 509, 100–10.CrossRefGoogle ScholarPubMed
Salisbury, J. G. & Graham, J. M. (1981). Cell surface radioiodination with the sparingly soluble catalyst Iodogen. Differences between the dividing and non–dividing populations of rodent thymocytes. The Biochemical Journal 194, 351–5.CrossRefGoogle ScholarPubMed
Sauberman, N., Fortier, N., Joshi, W., Piotrowski, J. & Snyder, L. (1983). Spectrin–hemoglobin crosslinkages associated with in vitro oxidant hypersensitivity in pathologic and artificially dehydrated cells. British Journal of Haematology 54, 1528.Google Scholar
Schlager, S. (1979). Specific 125I–iodination of cell surface lipids: Plasma membrane alterations induced during humoral immune attack. Journal of Immunology 123, 2108–13.CrossRefGoogle ScholarPubMed
Schmidt–Ullrich, R. & Wallach, D. F. H. (1978). Plasmodium knowlesi–induced antigens in membranes of parasitized rhesus monkey erythrocytes. Proceedings of the National Academy of Sciences, USA 75, 4949–53.CrossRefGoogle ScholarPubMed
Schmidt–Ullrich, R., Wallach, D. & Lightholder, J. (1979). Two Plasmodium knowlesi–specific antigens on the surface of schizont–infected Rhesus monkey erythrocytes induce antibody production in immune hosts. Journal of Experimental Medicine 150, 8699.CrossRefGoogle ScholarPubMed
Schmidt–Ullrich, R., Wallach, D. & Lightholder, J. (1980). Metabolic labelling of P. knowlesi–specific glycoproteins in membranes of parasitized rhesus monkey erythrocytes. Cell Biology International Reports 4, 555–61.CrossRefGoogle ScholarPubMed
Schmidt–Ullrich, R., Miller, L., Wallach, D., Lightholder, J., Powers, K. & Gwadz, R. (1981). Rhesus monkeys protected against Plasmodium knowlesi malaria produce antibodies against a 65000 M r-P. knowlesi glycoprotein at the surface of infected erythrocytes. Infection and Immunity 34, 519–25.CrossRefGoogle Scholar
Schmidt–Ullrich, R., Miller, L., Wallach, D. & Lightholder, J. (1982). Immunogenic antigens common to Plasmodium knowlesi and Plasmodium falciparum are expressed on the surface of infected erythrocytes. Journal of Parasitology 68, 185–93.CrossRefGoogle ScholarPubMed
Schmidt–Ullrich, R., Lightholder, J. & Monroe, M. (1983). Protective Plasmodium knowlesi Mr 74000 antigen in membranes of schizont–infected rhesus erythrocytes. Journal of Experimental Medicine 158, 146–58.CrossRefGoogle Scholar
Schwartz, R., Duzgunes, N., Chin, D. & Lubin, B. (1983). Interaction of phosphatidylserine–Phosphatidylcholine liposomes with sickle erythrocytes. Evidence for altered membrane surface properties. Journal of Clinical Investigation 71, 1570–80.CrossRefGoogle ScholarPubMed
Seed, T. & Kreier, J. (1972). Plasmodium gallinaceum: Erythrocyte membrane alterations and associated plasma changes induced by experimental infections. Proceedings of the Helminthological Society of Washington 39, 387411.Google Scholar
Shakespeare, P., Trigg, P. & Tappenden, L. (1979). Some properties of membranes in the simian malaria parasite. Annals of Tropical Medicine and Parasitology 73, 333–43.CrossRefGoogle ScholarPubMed
Sheetz, M. P. & Singer, S. J. (1976). Equilibrium and kinetic effects of drugs on the shapes of human erythrocytes. Journal of Cell Biology 70, 247–51.CrossRefGoogle ScholarPubMed
Sherman, I. W. (1977). Transport of amino acids and nucleic acid precursors in malarial parasites. Bulletin of the World Health Organization 55, 211–25.Google ScholarPubMed
Sherman, I. W. (1979). Biochemistry of Plasmodium (malarial parasites). Microbiological Reviews 43, 453–95.CrossRefGoogle ScholarPubMed
Sherman, I. W. (1983). Biochemistry of Malaria. In Chemotherapy and Immunology in the Control of Malaria, Filariasis and Leishmaniasis (ed. Anand, N. and Sen, A. B.), pp. 7183. New Delhi: Tata–McGraw Hill.Google Scholar
Sherman, I. W. (1984). Metabolism. In Handbook of Experimental Pharmacology, vol. 68 (ed. Peters, W. and Richards, W. H. G.), pp. 3181. Berlin: Springer–Verlag.Google Scholar
Sherman, I. W. & Greenan, J. (1984). Malarial infection alters red cell membrane fluidity. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 641–4.CrossRefGoogle ScholarPubMed
Sherman, I. W. & Jones, L. A. (1979). Plasmodium lophurae: Membrane proteins of erythrocyte–free plasmodia and malaria–infected red cells. Journal of Protozoology 26, 489501.CrossRefGoogle ScholarPubMed
Sherman, I. W. & Tanigoshi, L. (1983). Purification of Plasmodium lophurae cathepsin D and its effects on erythrocyte membrane proteins. Molecular and Biochemical Parasitology 8, 207–36.CrossRefGoogle ScholarPubMed
Shukla, D. S. & Hanahan, D. J. (1982). Membrane alterations in cellular aging: Susceptibility of phospholipids in density (age)–separated human erythrocytes to phospholipase A2. Archives of Biochemistry and Biophysics 214, 335–44.CrossRefGoogle ScholarPubMed
Smith, C., Kuettner, J., Tukey, D., Burris, S. & White, J. (1981). Variable deformability of irreversibly sickled erythrocytes. Blood 58, 71–7.Google ScholarPubMed
Snyder, L. M., Leb, L., Piotrowski, J., Sauberman, N., Liu, S. & Fortier, N. (1983). Irreversible spectrin–haemoglobin crosslinking in vivo: a marker for red cell sequence. British Journal of Haematology 53, 379–84.CrossRefGoogle Scholar
Suthipark, U., Krungkra, J., Jearnpipatkul, A., Yuthavong, Y. & Panjipan, B. (1982). Superoxidase dismutase in mouse red cells infected with Plasmodium berghei. Journal of Parasitology 68, 337–9.CrossRefGoogle Scholar
Takahashi, Y. & Sherman, I. W. (1978). Plasmodium lophurae: Cationized ferritin staining, an electron microscope cytochemical method for differentiating malarial parasite and host cell membranes. Experimental Parasitology 44, 145–54.CrossRefGoogle Scholar
Takahashi, Y. & Sherman, I. W. (1980). Plasmodium lophurae: Lectin mediated agglutination of malaria–infected red cells and fine–structure cytochemical detection of lectin binding sites on Plasmodial and host cell membranes. Experimental Parasitology 49, 233–47.CrossRefGoogle Scholar
Takahashi, Y., Yamada, K. & Sherman, I. (1980). Plasmodium lophurae: antibody–induced movement and capping of surface membranes of erythrocyte–free malarial parasites. Experimental Parasitology 50, 201–11.CrossRefGoogle ScholarPubMed
Tanabe, K., Matsumoto, T., Furusawa, M. & Takada, S. (1982 a). An increase in Sendai virus–induced cell fusion of erythrocytes infected with Plasmodium chabaudi. Experientia 38, 342–4.CrossRefGoogle ScholarPubMed
Tanabe, K., Mikkelson, R. & Wallach, D. (1982 b). Calcium transport of Plasmodium chabaudi–infected erythrocytes. Journal of Cell Biology 93, 680–4.CrossRefGoogle ScholarPubMed
Tanner, M. (1983). Erythrocyte membrane structure and function. Ciba Foundation Symposium 94, 1523.Google ScholarPubMed
Trigg, P., Hirst, S., Shakespeare, P. & Tappenden, L. (1977). Labelling of membrane of glycoprotein in erythrocytes infected with Plasmodium knowlesi. Bulletin of the World Health Organization 55, 205–10.Google ScholarPubMed
Udeinya, I., Graves, P., Carter, R., Aikawa, M. & Miller, L. (1983 a). Plasmodium falciparum: The binding characteristics of infected erythrocytes in continuous culture to human endothelial cells and amelanotic melanoma cells. Experimental Parasitology 56, 207–14.CrossRefGoogle Scholar
Udeinya, I., Miller, L. H., Mcgregor, J. & Jensen, J. (1983 b). Plasmodium falciparum strain–specific antibody blocks binding of infected erythrocytes to amelanotic melanoma cell. Nature, London 303, 429–31.CrossRefGoogle Scholar
Udeinya, I. J. & van Dyke, K. (1981). Plasmodium falciparum: Synthesis of glycoprotein by cultured erythrocytic stages. Experimental Parasitology 52, 297302.CrossRefGoogle ScholarPubMed
Van Deenen, L. L. M. (1981). Topology and dynamics of phospholipids in membranes. FEBS Letters 123, 315.CrossRefGoogle ScholarPubMed
Vermeulen, A. N., Roeffen, W., Van Munster, J. & Meuwissen, J. (1983). Isolation and characterization of membrane proteins of Plasmodium berghei sporozoites. Molecular and Biochemical Parasitology 7, 197207.CrossRefGoogle ScholarPubMed
Vermeulen, A. N., van Munster, J. & Meuwissen, J. (1982). Plasmodium berghei: Immunologically active proteins on the sporozoite surface. Experimental Parasitology 53, 199208.CrossRefGoogle ScholarPubMed
Vernot–Hernandez, J. & Heidrich, H. (1984). Time course of synthesis, transport and incorporation of a protein identified in purified membranes of host–erythrocytes infected with a knob–forming strain of Plasmodium falciparum. Molecular and Biochemical Parasitology 12, 337–50.CrossRefGoogle ScholarPubMed
Vincent, H. M. & Wilson, R. J. M. (1980). Reduced lectin binding on erythrocytes of monkeys infected with malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 74, 449–55.CrossRefGoogle ScholarPubMed
Wallach, D. F. H. & Conley, M. (1977). Altered membrane proteins of monkey erythrocytes infected with simian malaria. Journal of Molecular Medicine 2, 119–35.Google Scholar
Wahlin, B., Wahlgren, M., Perlmann, H., Berzins, K., Björkman, A., Patarroyo, M. & Perlmann, P. (1984). Human antibodies to a Mr 155000 Plasmodium falciparum antigen efficiently inhibit merozoite invasion. Proceedings of the National Academy of Sciences, USA 81, 7912–16.CrossRefGoogle Scholar
Weidekamm, E., Wallach, D., Lin, P. & Hendricks, J. (1973). Erythrocyte membrane alterations due to infection with Plasmodium berghei. Biochimica et Biophysica Acta 323, 539–46.CrossRefGoogle ScholarPubMed
Wiser, M. F., Wood, P., Eaton, J. & Sheppard, J. (1983). Membrane–associated phosphoproteins in Plasmodium berghei–infected murine erythrocytes. Journal of Cell Biology 97, 196201.CrossRefGoogle ScholarPubMed
Wundehlich, F., Stübig, H. & Königk, E. (1982 a). Intraerythrocytic development of Plasmodium knowlesi. Structure, temperature, and Ca2+ response of the host and parasite membranes. Journal of Protozoology 29, 4959.CrossRefGoogle Scholar
Wunderlich, I., Stübig, H. & Königk, E. (1982 b). Development of Plasmodium chabaudi in mouse red blood cells: Structural properties of the host and parasite membranes. Journal of Protozoology 29, 60–5.CrossRefGoogle ScholarPubMed
Yamada, K. & Sherman, I. W. (1980). Plasmodium lophurae: Malaria induced nucleotide changes in duckling (Anas domesticus) erythrocytes. Molecular and Biochemical Parasitology 1, 187–98.CrossRefGoogle Scholar
Yoshida, N., Nussenzweig, R., Potocnjak, P., Nussenzweio, V. & Aikawa, M. (1980). Biosynthesis of Pb44, the protective antigen of sporozoites of Plasmodium berghei. Journal of Experimental medicine 154, 1225–36.CrossRefGoogle Scholar
Yuthavong, Y., Wilairat, P., Panjipan, B., Potiwan, C. & Beale, G. (1979). Alterations in membrane proteins of mouse erythrocytes infected with different strains and species of malaria parasites. Comparative Biochemistry and Physiology 63B, 83–5.Google ScholarPubMed
Zavala, F., Gwadz, R., Collins, F., Nussenzweig, R. & Nussenzweig, V. (1982). Monoclonal antibodies to circumsporozoite proteins identify the species of malaria parasite in infected mosquitoes. Nature, London, 299, 737–8.CrossRefGoogle ScholarPubMed
Zwaal, R. F. A., Comftmrus, P. & van Deenen, L. (1977). Membrane asymmetry and blood coagulation. Nature, London 268, 358–60.CrossRefGoogle ScholarPubMed