Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T20:32:41.145Z Has data issue: false hasContentIssue false

Mefloquine interferes with glycolysis in schistosomula of Schistosoma mansoni via inhibition of enolase

Published online by Cambridge University Press:  06 February 2012

THERESIA MANNECK
Affiliation:
Department of Medical Parasitology and Infection Biology, Socinstrasse 57, Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
JENNIFER KEISER*
Affiliation:
Department of Medical Parasitology and Infection Biology, Socinstrasse 57, Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
JOACHIM MÜLLER
Affiliation:
Institute of Parasitology, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
*
*Corresponding author: Department of Medical Parasitology and Infection Biology, Socinstrasse 57, Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland. Tel: +41 61 284 8218. Fax: +41 61 284 8105. E-mail: [email protected]

Summary

The antimalarial drug mefloquine has promising antischistosomal properties killing haematophagous adult schistosomes as well as schistosomula. The mode of action and involved drug targets of mefloquine in Schistosoma mansoni schistosomula are unknown. In order to identify mefloquine-binding proteins and thus potential drug targets, mefloquine affinity chromatography with S. mansoni schistosomula crude extracts was performed. We found one specific mefloquine-binding protein that was identified by mass spectrometry as the glycolytic enzyme enolase (Q27877). Enolase activity assays were performed on schistosomula crude extracts and on the recombinant enolase Q27877 expressed in Escherichia coli. In schistosomula crude extracts enolase activity was inhibited by mefloquine and by the enolase inhibitor sodium fluoride, while activity of the recombinant enolase was not affected. In contrast to enolase from crude extracts, recombinant Q27877 did not bind to mefloquine-agarose. Using isothermal microcalorimetry, we next investigated the metabolic inhibition of mefloquine and 3 known glycolytic inhibitors in Schistosoma spp., namely sodium fluoride, 3-bromopyruvate and menadione on schistosomula in the presence or absence of glucose. We found that in the presence of glucose, schistosomula were less affected by mefloquine, sodium fluoride and 3-bromopyruvate, whereas glucose had no protective effect when schistosomula had been exposed to menadione. These results suggest a potential role of mefloquine as an inhibitor of glycolysis, at least in stages where other targets like haem degradation are not relevant.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 33893402.CrossRefGoogle ScholarPubMed
Berriman, M., Haas, B. J., Loverde, P. T., Wilson, R. A., Dillon, G. P., Cerqueira, G. C., Mashiyama, S. T., Al-Lazikani, B., Andrade, L. F., Ashton, P. D., Aslett, M. A., Bartholomeu, D. C., Blandin, G., Caffrey, C. R., Coghlan, A., Coulson, R., Day, T. A., Delcher, A., Demarco, R., Djikeng, A., Eyre, T., Gamble, J. A., Ghedin, E., Gu, Y., Hertz-Fowler, C., Hirai, H., Hirai, Y., Houston, R., Ivens, A., Johnston, D. A., Lacerda, D., Macedo, C. D., Mcveigh, P., Ning, Z., Oliveira, G., Overington, J. P., Parkhill, J., Pertea, M., Pierce, R. J., Protasio, A. V., Quail, M. A., Rajandream, M. A., Rogers, J., Sajid, M., Salzberg, S. L., Stanke, M., Tivey, A. R., White, O., Williams, D. L., Wortman, J., Wu, W., Zamanian, M., Zerlotini, A., Fraser-Liggett, C. M., Barrell, B. G. and El-Sayed, N. M. (2009). The genome of the blood fluke Schistosoma mansoni. Nature, London 460, 352358.CrossRefGoogle ScholarPubMed
Brandina, I., Graham, J., Lemaitre-Guillier, C., Entelis, N., Krasheninnikov, I., Sweetlove, L., Tarassov, I. and Martin, R. P. (2006). Enolase takes part in a macromolecular complex associated to mitochondria in yeast. Biochimica et Biophysica Acta 1757, 12171228.CrossRefGoogle Scholar
Bueding, E. (1950). Carbohydrate metabolism of Schistosoma mansoni. The Journal of General Physiology 33, 475495.CrossRefGoogle ScholarPubMed
Bunick, F. J. and Kashket, S. (1982). Binding of fluoride by yeast enolase. Biochemistry 21, 42854290.CrossRefGoogle ScholarPubMed
Davis, R. E., Hardwick, C., Tavernier, P., Hodgson, S. and Singh, H. (1995). RNA trans-splicing in flatworms. Analysis of trans-spliced mRNAs and genes in the human parasite, Schistosoma mansoni. The Journal of Biological Chemistry 270, 2181321819.CrossRefGoogle ScholarPubMed
Decker, B. L. and Wickner, W. T. (2006). Enolase activates homotypic vacuole fusion and protein transport to the vacuole in yeast. The Journal of Biological Chemistry 281, 1452314528.CrossRefGoogle Scholar
Dorn, A., Vippagunta, S. R., Matile, H., Jaquet, C., Vennerstrom, J. L. and Ridley, R. G. (1998). An assessment of drug-haematin binding as a mechanism for inhibition of haematin polymerisation by quinoline antimalarials. Biochemical Pharmacology 55, 727736.CrossRefGoogle ScholarPubMed
Hojlund, K., Bowen, B. P., Hwang, H., Flynn, C. R., Madireddy, L., Geetha, T., Langlais, P., Meyer, C., Mandarino, L. J. and Yi, Z. (2009). In vivo phosphoproteome of human skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS. Journal of Proteome Research 8, 49544965.CrossRefGoogle ScholarPubMed
Keiser, J. (2010). In vitro and in vivo trematode models for chemotherapeutic studies. Parasitology 137, 589603.CrossRefGoogle ScholarPubMed
Keiser, J., Chollet, J., Xiao, S. H., Mei, J. Y., Jiao, P. Y., Utzinger, J. and Tanner, M. (2009). Mefloquine-an aminoalcohol with promising antischistosomal properties in mice. PLoS Neglected Tropical Diseases 3, e350.CrossRefGoogle ScholarPubMed
Keiser, J., Vargas, M. and Doenhoff, M. J. (2010). Activity of artemether and mefloquine against juvenile and adult Schistosoma mansoni in athymic and immunocompetent NMRI mice. The American Journal of Tropical Medicine and Hygiene 82, 112114.CrossRefGoogle ScholarPubMed
Lochmatter, C., Schifferli, J. A. and Martin, P. J. (2009). Schistosoma mansoni TOR is a tetraspanning orphan receptor on the parasite surface. Parasitology 136, 487498.CrossRefGoogle ScholarPubMed
Manneck, T., Braissant, O., Ellis, W. and Keiser, J. (2011 a). Schistosoma mansoni: antischistosomal activity of the four optical isomers and the two racemates of mefloquine on schistosomula and adult worms in vitro and in vivo. Experimental Parasitology 127, 260269.CrossRefGoogle ScholarPubMed
Manneck, T., Braissant, O., Haggenmüller, Y. and Keiser, J. (2011 b). Isothermal microcalorimetry to study drugs against Schistosoma mansoni. Journal of Clinical Microbiology 49, 12171225.CrossRefGoogle ScholarPubMed
Manneck, T., Haggenmüller, Y. and Keiser, J. (2010). Morphological effects and tegumental alterations induced by mefloquine on schistosomula and adult flukes of Schistosoma mansoni. Parasitology 137, 8598.CrossRefGoogle ScholarPubMed
Müller, J., Sidler, D., Nachbur, U., Wastling, J., Brunner, T. and Hemphill, A. (2008). Thiazolides inhibit growth and induce glutathione-S-transferase Pi (GSTP1)-dependent cell death in human colon cancer cells. International Journal of Cancer 123, 17971806.CrossRefGoogle ScholarPubMed
Oliveira, M. F., D'avila, J. C. P., Torres, C. R., Oliveira, P. L., Tempone, A. J., Rumjanek, F. D., Braga, C. M. S., Silva, J. R., Dansa-Petretski, M., Oliveira, M. A., De Souza, W. and Ferreira, S. T. (2000). Haemozoin in Schistosoma mansoni. Molecular and Biochemical Parasitology 111, 217221.CrossRefGoogle ScholarPubMed
Pal-Bhowmick, I., Vora, H. K. and Jarori, G. K. (2007). Sub-cellular localization and post-translational modifications of the Plasmodium yoelii enolase suggest moonlighting functions. Malaria Journal 6, 45.CrossRefGoogle ScholarPubMed
Pancholi, V. (2001). Multifunctional alpha-enolase: its role in diseases. Cellular and Molecular Life Sciences 58, 902920.CrossRefGoogle ScholarPubMed
Pasternack, R. F., Munda, B., Bickford, A., Gibbs, E. J. and Scolaro, L. M. (2010). On the kinetics of formation of hemozoin, the malaria pigment. Journal of Inorganic Biochemistry 104, 11191124.CrossRefGoogle ScholarPubMed
Pelicano, H., Martin, D. S., Xu, R. H. and Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene 25, 46334646.CrossRefGoogle ScholarPubMed
Qin, J., Chai, G., Brewer, J. M., Lovelace, L. L. and Lebioda, L. (2006). Fluoride inhibition of enolase: crystal structure and thermodynamics. Biochemistry 45, 793800.CrossRefGoogle ScholarPubMed
Ramajo-Hernandez, A., Perez-Sanchez, R., Ramajo-Martin, V. and Oleaga, A. (2007). Schistosoma bovis: plasminogen binding in adults and the identification of plasminogen-binding proteins from the worm tegument. Experimental Parasitology 115, 8391.CrossRefGoogle ScholarPubMed
Renslo, A. R. and McKerrow, J. H. (2006). Drug discovery and development for neglected parasitic diseases. Nature Chemical Biology 2, 701710.CrossRefGoogle ScholarPubMed
Sleno, L. and Emili, A. (2008). Proteomic methods for drug target discovery. Current Opinion in Chemical Biology 12, 4654.CrossRefGoogle ScholarPubMed
Stefanic, S., Dvorak, J., Horn, M., Braschi, S., Sojka, D., Ruelas, D. S., Suzuki, B., Lim, K. C., Hopkins, S. D., Mckerrow, J. H. and Caffrey, C. R. (2010). RNA interference in Schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Neglected Tropical Diseases 4, e850.CrossRefGoogle ScholarPubMed
Van den Bossche, H. (1985). How anthelmintics help us to understand helminths. Parasitology 90, 675685.CrossRefGoogle Scholar
Verrax, J., Stockis, J., Tison, A., Taper, H. S. and Calderon, P. B. (2006). Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice. Biochemical Pharmacology 72, 671680.CrossRefGoogle ScholarPubMed
Warburg, O. and Christian, W. (1941). Chemischer Mechanismus der Fluorid-Hemmung der Gärung. Naturwissenschaften 29, 590.CrossRefGoogle Scholar
Xiao, S. H., Mei, J. Y. and Jiao, P. Y. (2011). Effect of mefloquine administered orally at single, multiple, or combined with artemether, artesunate, or praziquantel in treatment of mice infected with Schistosoma japonicum. Parasitology Research 108, 399406.CrossRefGoogle ScholarPubMed
Yang, J., Qiu, C., Xia, Y., Yao, L., Fu, Z., Yuan, C., Feng, X. and Lin, J. (2010). Molecular cloning and functional characterization of Schistosoma japonicum enolase which is highly expressed at the schistosomulum stage. Parasitology Research 107, 667677.CrossRefGoogle ScholarPubMed
Zhang, J., Krugliak, M. and Ginsburg, H. (1999). The fate of ferriprotorphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs. Molecular Biochemical Parasitology 99, 129141.CrossRefGoogle ScholarPubMed