Published online by Cambridge University Press: 19 April 2005
The Py235 merozoite rhoptry protein of the rodent malaria agent Plasmodium (yoelii) yoeli is encoded by the Py235 multigene family whose members are transcribed during the parasite's asexual life-cycle in a fashion where single schizonts subsequently give rise to sets of merozoites containing distinct Py235 transcripts. Homologues of Py235 are found in other malaria species, and antibodies to both Py235 and P. falciparum homologues inhibit merozoite invasion, suggesting a unique survival strategy involving immune evasion and host adaptation. Using a mathematical approach to model this free-living stage of Plasmodium in interaction with specific antibodies and a heterogeneous red blood cell population, we investigate if, and under what conditions, this mechanism of clonal phenotypic variation can play a role in immune evasion and adaptation to a dynamic erythropoietic environment.