Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T00:19:43.006Z Has data issue: false hasContentIssue false

Maternal transfer of antibodies induced by infection with Eimeria maxima partially protects chickens against challenge with Eimeria tenella

Published online by Cambridge University Press:  06 April 2009

N. C. Smith
Affiliation:
Institut für Parasitologie, Universität Zürich, Winterthurerstrasse 266a, CH-8057, Zürich
M. Wallach
Affiliation:
lnstitut für allgemeine Mikrobiologie, Universität Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
M. Petracca
Affiliation:
Institut für Parasitologie, Universität Zürich, Winterthurerstrasse 266a, CH-8057, Zürich
R. Braun
Affiliation:
lnstitut für allgemeine Mikrobiologie, Universität Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
J. Eckert
Affiliation:
Institut für Parasitologie, Universität Zürich, Winterthurerstrasse 266a, CH-8057, Zürich

Extract

Infection of breeding hens with Eimeria maxima induces production of Eimeria-specific IgG antibodies which are transferred to hatchlings via the egg yolk and confer a high degree of maternal immunity against homologous challenge and partial immunity to infection with another important species, Eimeria tenella. As an example, in an experiment using hatchlings from eggs collected between days 28 and 39 after infection of the hens with 20 000 sporulated E. maxima oocysts, control chicks (challenged with 100 sporulated oocysts) excreted 6·8±1·2 million (mean±s.e., n = 10) or 5·8±1·2 million (n = 8) oocysts of E. maxima or E. tenella, respectively, compared to 0·9±0·4 million (n = 5) E. maxima oocysts or 2·2±0·4 million (n = 9) E. tenella oocysts excreted by hatchlings of infected hens. This represents an 87% reduction in oocyst excretion with regard to E. maxima and a 62% reduction in oocyst excretion with regard to E. tenella in the progeny of the infected hens. In another experiment, eggs were collected from days 28 to 37 and again from days 114 to 123 after infection of the hens with E. maxima and hatchling oocyst excretion rates were 82% and 62%, respectively, reduced for E. maxima and 43% and 41%, respectively, reduced for E. tenella in the progeny of hens infected with E. maxima compared to the progeny of uninfected hens. ELISA and Western blot analyses of maternally-derived IgG revealed a high degree of cross-reactivity to antigens of E. maxima and E. tenella. Thus, maternally-derived, IgG-mediated cross- resistance to different species of Eimeria occurs in the chicken, most likely as a result of cross-recognition of conserved epitopes or proteins.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Danforth, H. D., Augustine, P. C. & Jenkins, M. C. (1993). A review of progress in coccidial vaccine development. In Proceedings of the VIth International Coccidiosis Conference, (ed. Barta, J. R. & Fernando, M. A.), pp. 4960, Guelph, Canada: Mofflitt Print.Google Scholar
Gilbert, J. M., Bhanushali, J. K. & McDougald, L. R. (1988). An enzyme-linked immunosorbent assay for coccidiosis in chickens: correlation of antibody levels with prior exposure to coccidia in the laboratory and in the field. Avian Diseases 32, 688–94.CrossRefGoogle ScholarPubMed
Gore, T. C. & Long, P. L. (1982). The biology and pathogenicity of a recent field isolate of Eimeria praecox Johnson, 1930. Journal of Protozoology 29, 82–5.CrossRefGoogle ScholarPubMed
Hein, H. (1971). Eimeria brunetti: cross infections in chickens immunized to E. maxima. Experimental Parasitology 29, 367–74.CrossRefGoogle ScholarPubMed
Lösch, U., Schranner, I., Wanke, R. & Jürgens, L. (1986). The chicken egg, an antibody source. Journal of Veterinary Medicine B33, 609–19.CrossRefGoogle ScholarPubMed
Rose, M. E. (1967 a). Immunity to Eimeria brunetti and Eimeria maxima infections in the fowl. Parasitology 57, 363–70.CrossRefGoogle ScholarPubMed
Rose, M. E. (1967 b). Immunity to Eimeria tenella and Eimeria necatrix infections in the fowl. I. Influence of the site of infection and the stage of the parasite. II. Cross-protection. Parasitology 57, 567–83.CrossRefGoogle ScholarPubMed
Rose, M. E. (1972). Immunity to coccidiosis: maternal transfer in Eimeria maxima infections. Parasitology 65, 273–82.CrossRefGoogle ScholarPubMed
Rose, M. E. (1987). Eimeria, Isospora and Cryptosporidium. In Immunology, Immunopathology and Immunoprophylaxis of Parasitic Infections, vol. 3, Protozoa and Arthropods (ed. Soulsby, E. J. L.), pp. 275312, Boca Raton, Florida, USA: CRC Press Inc.Google Scholar
Rose, M. E. & Long, P. L. (1971). Immunity to coccidiosis: protective effects of transferred serum and cells investigated in chick embryos infected with Eimeria tenella. Parasitology 63, 299313.CrossRefGoogle ScholarPubMed
Smith, N. C., Wallach, M., Miller, C. M. D., Morgenstern, R., Braun, R. & Eckert, J. (1994). Maternal transmission of immunity to Eimeria maxima: ELISA analysis of protective antibodies induced by infection. Infection and Immunity 62, 1348–57.CrossRefGoogle ScholarPubMed
Wagenbach, G. E., Challey, J. R. & Burns, W. C. (1966). A method for purifying coccidian oocysts employing chlorox and sulfuric acid-dichromate solution. Journal of Parasitology 52, 1222.CrossRefGoogle Scholar
Wakelin, D. & Rose, M. E. (1990). Immunity to coccidiosis. In Coccidiosis of Man and Domestic Animals, (ed. Long, P. L.), pp. 281306, Boca Raton, Florida, USA: CRC Press.Google Scholar
Wallach, M., Mencher, D., Yarus, S., Halabi, A. & Pugatsch, T. (1989). Eimeria maxima: identification of gametocyte protein antigens and their possible role in protective immunity. Experimental Parasitology 68, 4956.CrossRefGoogle Scholar
Xie, M., Gilbert, J. M. & McDougald, L. R. (1992). Electrophoretic and immunological characterization of proteins of merozoites of Eimeria acervulina, E. maxima, E. necatrix and E. tenella. Journal of Parasitology 78, 82–6.CrossRefGoogle ScholarPubMed