Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T07:57:39.710Z Has data issue: false hasContentIssue false

Malaria: drug use and the immune response

Published online by Cambridge University Press:  06 April 2009

G. A. T. Targett
Affiliation:
Department of Medical Parasitology, School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT

Extract

Malaria is a controllable disease, yet the resources required - human, technical and financial - are massive, and are currently beyond the vast majority of the 96 countries where the disease is endemic. The control measures most widely applied are vector control through spraying or use of insecticide-impregnated bednets, and chemotherapy. The biological problems to add to the resource issues are well known; increasing resistance of anopheline mosquitoes to the most widely used insecticides, and the progressive development of drug resistance in the parasite populations, especially Plasmodium falciparum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, S. J., Otoo, L. N., Cooke, J. A., O'Donnell, A. & Greenwood, B. M. (1990). Sensitivity of Plasmodium falciparum to Maloprim after five years of targeted chemoprophylaxis in a rural area of The Gambia. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 666–7.CrossRefGoogle Scholar
Barry, M., Patterson, J. E., Tirrell, S., Cullen, M. R. & Shope, R. E. (1991). The effect of chloroquine prophylaxis on yellow fever vaccine antibody response: comparison of plaque reduction neutralization test and enzyme-linked immunosorbent assay. American Journal of Tropical Medicine and Hygiene 44, 7982.CrossRefGoogle ScholarPubMed
Björkman, A. (1988). Interactions between chemotherapy and immunity to malaria. In: Malaria Immunology, (ed. Perlmann, P. & Wigzell, H.) pp. 331356. Basel: Karger.CrossRefGoogle Scholar
Björkman, A., Broholt, J., Pehrson, P.O., Willcox, M., Rombo, L., Hedman, P., Kollie, E., Alestig, K., Hanson, A. & Bengtsson, E. (1986). Monthly antimalarial chemotherapy to children in a holoendemic area of Liberia. American Journal of Tropical Medicine and Hygiene 80, 155–67.Google Scholar
Björkman, A., Broholt, J., Willcox, M., Pehrson, P. O., Rombo, L., Hedman, P., Hetland, G., Kollie, E., Hanson, A. P. & Bengtsson, E. (1985). Malaria control by chlorproguanil. 1. Clinical effects and susceptibility of Plasmodium falciparum in vivo after seven years of monthly chlorproguanil administration to children in a Liberian village. Annals of Tropical Medicine and Parasitology 79, 597601.CrossRefGoogle Scholar
Bradley-Moore, A. M., Greenwood, B. M., Bradley, A. K., Bartlett, A., Bidwell, D. E., Voller, A., Kirkwood, B. R. & Gilles, H. M. (1985). Malaria chemoprophylaxis with chloroquine in young Nigerian children. I. Its effect on mortality, morbidity and the prevalence of malaria. Annals of Tropical Medicine and Parasitology 79, 549–63.CrossRefGoogle ScholarPubMed
Bradley-Moore, M., Greenwood, B. M., Bradley, A. K., Bartlett, A., Bidwell, D. E., Voller, A., Craske, J., Kirkwood, B. R. & Gilles, H. M. (1985). Malaria chemoprophylaxis with chloroquine in young Nigerian children. II. Effect on the immune response to vaccination. Annals of Tropical Medicine and Parasitology 79, 563–73.CrossRefGoogle ScholarPubMed
Bygbjerg, I. C. & Flachs, H. (1986). Effect of chloroquine on human lymphocyte proliferation. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 231–5.CrossRefGoogle ScholarPubMed
Carter, R. L., Connors, T. A., Weston, B. J. & Davies, A. J. S. (1973). Treatment of a mouse lymphoma by Lasparginase: success depends on the host's immune response. International Journal of Cancer 11, 345–57.CrossRefGoogle Scholar
Clarke, J. B., Maggs, J. L., Kitteringham, N. R. & Park, B. K. (1990). Immunogenicity of amodiaquine in the rat. International Archives of Allergy and Applied Immunology 91, 335–42.CrossRefGoogle ScholarPubMed
Clarke, J. B., Neftel, K., Kitteringham, N. R. & Park, B. K. (1991). Detection of antidrug IgG antibodies in patients with adverse drug reactions to amodiaquine. International Archives of Allergy and Applied Immunology 95, 369–75.CrossRefGoogle ScholarPubMed
Brogger, Cornille R., Mathews, H. M., Storey, J., Ashkar, T. S., Brogger, S. & Molineaux, L. (1978). Changing patterns in the humoral immune response to malaria before, during, and after the application of control measures: a longitudinal study in the West African savanna. Bulletin of the World Health Organization 56, 579600.Google Scholar
Ertel, W., Morrison, M. H., Ayala, A. & Chaudry, I. H. (1991). Chloroquine attenuates hemorrhagic shock- induced suppression of Kupffer cell antigen presentation and major histocompatibility complex class II antigen expression through blockade of tumor necrosis factor and prostaglandin release. Blood 78, 1781–8.CrossRefGoogle ScholarPubMed
Ferrante, A., Rowan-Kelly, B., Seow, W. K. & Thong, Y. H. (1986). Depression of human polymorphonuclear leucocyte function by anti-malarial drugs. Immunology 58, 125–30.Google ScholarPubMed
Gilks, C. F., Walliker, D. & Newbold, C. I. (1990). Relationships between sequestration, antigenic variation and chronic parasitism in Plasmodium chabaudi chabaudi - a rodent model. Parasite Immunology 12, 4564.CrossRefGoogle Scholar
Gilles, H. M., Greenwood, B. M., Greenwood, A. M., Bradley, A. K., Blakebrough, I. S., Pugh, R. N. H., Musa, B., Shehu, U., Tayo, M. & Jewsbury, J. (1983). The Malumfashi Project - an epidemiological, clinical and laboratory study. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 2431.CrossRefGoogle ScholarPubMed
Gottschall, J. L., Elliot, W., Lianos, E., McFarland, J. G., Wolfmeyer, K. & Aster, R. H. (1991). Quinine- induced immune thrombocytopenia associated with hemolytic uremic syndrome: a new clinical entity. Blood 2, 306–10.CrossRefGoogle Scholar
Grau, G. E., Taylor, T. E., Molyneux, M. E., Wirima, J. J., Vassalli, P., Hommel, M. & Lambert, P H. (1989).Tumor necrosis factor and disease severity in children with falciparum malaria. New England Journal of Medicine 320, 1586–9.CrossRefGoogle ScholarPubMed
Greenwood, B. M. (1991). Malaria chemoprophylaxis in endemic regions. In: Malaria. Waiting for the Vaccine, (ed. Targett, G. A. T.) pp. 83104.Chichester, England: J. Wiley.Google Scholar
Greenwood, B. M., Bradley, A. K., Blackebrough, I. S., Whittle, H. C., Marshall, T. F.De, C. & Gilles, H. M. (1980). The immune response to a meningococcal polysaccharide vaccine in an African village. Transactions of the Royal Society of Tropical Medicine and Hygiene 74, 340–6.CrossRefGoogle Scholar
Greenwood, B. M., Greenwood, A. M., Bradley, A. K., Snow, R. W., Byass, P., Hayes, R. J. & N'Jie, A. B. H. (1988). Comparison of two strategies for control of malaria within a primary health care programme in The Gambia. Lancet 1, 1121–7.CrossRefGoogle ScholarPubMed
Greenwood, B. M., Greenwood, A. M., Snow, R. W., Byass, P., Bennett, S. & Hatib-N'Jie, A. B. (1989). The effects of malaria chemoprophylaxis given by traditional birth attendants on the course and outcome of pregnancy. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 589–94.CrossRefGoogle ScholarPubMed
Harland, P. S. E. G., Frood, J. D. L. & Parkin, J. M. (1975). Some effects of partial malaria suppression in Uganda children during the first 3 years of life. Transactions of the Royal Society of Tropical Medicine and Hygiene 69, 261–2.CrossRefGoogle ScholarPubMed
Howard, R. J. (1992). Asexual deviants take over. Nature 357, 647–8.CrossRefGoogle ScholarPubMed
Ichimori, K., Curtis, C. F. & Targett, G. A. T. (1990). The effects of chloroquine on the infectivity of chloroquine-sensitive and -resistant populations of Plasmodium yoelii nigeriensis to mosquitoes. Parasitology 100, 377–81.CrossRefGoogle ScholarPubMed
Kremsner, P. G., Grundmann, H., Neifer, S., Sliwa, K., Sahlmüller, G., Hegenscheid, B. & Bienzle, U. (1991). Pentoxifylline prevents murine cerebral malaria. Journal of Infectious Diseases 164, 605–8.CrossRefGoogle ScholarPubMed
Kwiatkowski, D., Hill, A. V. S., Sambou, I., Twumasi, P., Castracane, J., Manogue, K. R., Cerami, A., Brewster, D. R. & Greenwood, B. M. (1990). TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet 336, 1201–4.CrossRefGoogle ScholarPubMed
Labro, M. T. & Babin-Chevaye, C. (1988). Effects of amodiaquine, chloroquine, and mefloquine on human polymorphonuclear neutrophil function in vitro. Antimicrobial Agents and Chemotherapy 32, 1124–30.CrossRefGoogle ScholarPubMed
Langhorne, J., Simon-Haarhaus, B. & Meding, S. (1990). The role of CD4+ T cells in the protective immune response to Plasmodium chabaudi in vivo. Immunology Letters 25, 101–8.CrossRefGoogle ScholarPubMed
Lee, K. C., Wong, M. & Spitzer, D. (1982). Chloroquine as probe for antigen processing by accessory cells. Transplantation 34, 150–3.CrossRefGoogle ScholarPubMed
Lewis, G. M. & Slack, J. H. (1990). The preferential effects of chloroquine on the 1gM and IgG subclass responses to TI and TD antigens in BALB/cAn mice. Journal of Pharmacy and Pharmacology 42, 60–1.CrossRefGoogle Scholar
Lwin, M., Targett, G. A. T. & Doenhoff, M. J. (1987). Reduced efficacy of chemotherapy of Plasmodium chabaudi in T cell-deprived mice. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 899902.CrossRefGoogle Scholar
Marsh, K., Otoo, L. N., Hayes, R. J., Carson, D. C. & Greenwood, B. M. (1989). Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 293303.CrossRefGoogle ScholarPubMed
McChesney, E. W. & Fitch, C. D. (1984). 4- Aminoquinolines. In: Handbook of Experimental Pharmacology vol. 68: Antimalarial drugs I. (ed. Peters, W. & Richards, W. H. G.), pp. 360. Berlin: Springer-Verlag.Google Scholar
Menon, A., Snow, R. W., Byass, P., Greenwood, B. M., Hayes, R. J. & N'jie, A. B. H. (1990). Sustained protection against mortality and morbidity from malaria in rural Gambian children by chemoprophylaxis given by village health workers. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 768–72.CrossRefGoogle ScholarPubMed
Meuwissen, J. H. E. T., Golenser, J. & Verhave, J. P. (1978). Development of effective antisporozoite immunity by natural bites of Plasmodium berghei-infected mosquitoes in rats under prophylactic treatment with various drug regimens. Israel Journal of Medical Sciences 14, 601–5.Google ScholarPubMed
Molineaux, L. & Gramiccia, G. (1980). The Garki Project, Geneva: World Health Organization.Google Scholar
Osario, L. M., Fonte, L. & Finlay, C. M. (1992). Inhibition of human monocyte function by prophylactic doses of chloroquine. American Journal of Tropical Medicine and Hygiene 46, 165–8.CrossRefGoogle Scholar
Otoo, E. N. (1991). Studies on the immunological (and pharmacological) consequences of malaria chemoprophylaxis in young Gambian children. Ph.D. thesis, University of London 1991.Google Scholar
Pappaioanou, M., Fishbein, D. B., Dreesen, D. W., Schwartz, T. K., Campbell, G. H., Sumner, J. W., Patchen, L. C. & Brown, w. J. (1986). Antibody response to preexposure human diploid-cell rabies vaccine given concurrently with chloroquine. New England Journal of Medicine 314, 280–4.CrossRefGoogle ScholarPubMed
Peters, W. (1987). Chemotherapy and Drug Resistance in Malaria. Vol 2, 2nd edn. London: Academic Press.Google Scholar
Picot, S., Peyron, F., Vuillez, J., Polack, B. & Ambroise-Thomas, P. (1991). Chloroquine inhibits tumor necrosis factor production by human macrophages in vitro. Journal of Infectious Diseases 164, 830.CrossRefGoogle ScholarPubMed
Ranford-Cartwright, L. C., Balfe, P., Carter, R. & Walliker, D. (1991). Genetic hybrids of Plasmodium falciparum identified by amplication of genomic DNA from single oocyts. Molecular & Biochemical Parasitology 49, 239–43.CrossRefGoogle Scholar
Roberts, D. J., Craig, A. G., Berendt, A. R., Pinches, R., Nash, G., Marsh, K. & Newbold, C. I. (1992). Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357, 689–92.CrossRefGoogle ScholarPubMed
Salmeron, G. & Lipsky, P. E. (1983). Immunosuppressive potential of antimalarials. American Journal of Medicine 75 Supplyes, 1924.CrossRefGoogle ScholarPubMed
Targett, G. A. T. (1984). Interactions between chemotherapy and immunity. In Handbook of Experimental Pharmacology vol. 68: Antimalarial drugs I. (ed. Peters, W. & Richards, W. H. G.), pp. 331348. Berlin: Springer-Verlag.Google Scholar
Targett, G. A. T. (1985). Chemotherapy and the immune response in parasitic infections. Parasitology 90, 661–73.CrossRefGoogle ScholarPubMed
Targett, G. A. T. (1991). Malaria: Waiting for the Vaccine, Chichester, England: J. Wiley.Google Scholar
Taylor, D. N., Wasi, C. & Bernard, K. (1984). Chloroquine prophylaxis associated with a poor antibody response to human diploid cell rabies vaccine. Lancet 1, 1405.CrossRefGoogle ScholarPubMed
Thaitong, S., Beale, G. H., Fenton, B., McBride, J., Rosario, V., Walker, A. & Walliker, D. (1984). Clonal diversity in a single isolate of the malaria parasite Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 242–5.CrossRefGoogle Scholar
Visentin, G. P., Newman, P. J. & Aster, R. H. (1991). Characteristics of quinine- and quinidine-induced antibodies specific for platelet glycoproteins II b and III a. Blood 77, 2668–76.CrossRefGoogle Scholar
Voller, A. & Wilson, H. (1964). Immunological aspects of a population under prophylaxis against malaria. British Medical Journal 2, 551–2.CrossRefGoogle ScholarPubMed
Walliker, D. (1991). Malaria parasites: randomly interbreeding or “clonal” populations? Parasitology Today 7, 232–5.CrossRefGoogle ScholarPubMed
Wernsdorfer, W. H. (1991). The development and spread of drug-resistant malaria. Parasitology Today 7, 297303.CrossRefGoogle ScholarPubMed