Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-16T18:00:26.018Z Has data issue: false hasContentIssue false

Malaria diagnostics: now and the future

Published online by Cambridge University Press:  12 September 2014

PETER L. CHIODINI*
Affiliation:
Hospital for Tropical Diseases, London WC1E 6JB, UK The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
*
*Corresponding author: Department of Clinical Parasitology, Hospital for Tropical Diseases, Mortimer Market, London WC1E 6JB, UK. E-mail: [email protected]

Summary

Light microscopy of stained blood films is still the mainstay of malaria diagnosis in many regions, but its pre-eminence is threatened by accurate and sensitive rapid diagnostic tests (RDTs) based on immunochromatography which are now widely used in the field. In well-resourced regions, nucleic acid detection easily out performs microscopy and RDTs. This paper reviews the main in vitro methods for parasite detection and considers future trends in diagnostics, both for sophisticated laboratory settings and for field use.

Type
Special Issue Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, J. W., Williams, J., Bain, B. J., Parker-Williams, J.Chiodini, P. L., and General Haematology Task Force of the British Committee for Standards in Haematology. (2013). Guideline: the laboratory diagnosis of malaria. General Haematology Task Force of the British Committee for Standards in Haematology. British Journal of Haematology 163, 573580.Google Scholar
Beshir, K. B., Hallett, R. L., Eziefula, A. C., Bailey, R., Watson, J., Wright, S. G., Chiodini, P. L., Polley, S. D. and Sutherland, C. J. (2010). Measuring the efficacy of anti-malarial drugs in vivo: quantitative PCR measurement of parasite clearance. Malaria Journal 9, 312.Google Scholar
Beurskens, M., Mens, P., Schallig, H., Syafruddin, D., Asih, P. B., Hermsen, R. and Sauerwein, R. (2009). Quantitative determination of Plasmodium vivax gametocytes by real-time quantitative nucleic acid sequence-based amplification in clinical samples. American Journal of Tropical Medicine and Hygiene 81, 366369.Google Scholar
Bronner, U., Divis, P. C., Färnert, A. and Singh, B. (2009). Swedish traveller with Plasmodium knowlesi malaria after visiting Malaysian Borneo. Malaria Journal 16, 15.Google Scholar
Chilton, D., Malik, A. N., Armstrong, M., Kettelhut, M., Parker-Williams, J. and Chiodini, P. L. (2006). Use of rapid diagnostic tests for diagnosis of malaria in the UK. Journal of Clinical Pathology 59, 862866.CrossRefGoogle ScholarPubMed
Chiodini, P. L., Bowers, K., Jorgensen, P., Barnwell, J. W., Grady, K. K., Luchavez, J., Moody, A. H., Cenizal, A. and Bell, D. (2007). The heat stability of Plasmodium lactate dehydrogenase-based and histidine-rich protein 2-based malaria rapid diagnostic tests. Transactions of the Royal Society of Tropical Medical Hygiene 101, 331337.Google Scholar
Foster, D., Cox-Singh, J., Mohamad, D. S., Krishna, S., Chin, P. P. and Singh, B. (2014). Evaluation of three rapid diagnostic tests for the detection of human infections with Plasmodium knowlesi. Malaria Journal 13, 60.Google Scholar
Gaillard, T., Briolant, S., Houzé, S., Baragatti, M., Wurtz, N., Hubert, V., Lavina, M., Pascual, A., Travaillé, C., Le Bras, J.Pradines, B., and French National Reference Centre for Imported Malaria Study Group. (2013). PftetQ and pfmdt copy numbers as predictive molecular markers of decreased ex vivo doxycycline susceptibility in imported Plasmodium falciparum malaria. Malaria Journal 12, 414.CrossRefGoogle ScholarPubMed
Gilles, H. M. (1993). Milestones in the history of malaria and its control. In Bruce-Chwatt's Essential Malariology, 3rd Edn (ed. Gilles, H. M. and Warrell, D. A.), p. 5. Edward Arnold, London, UK.Google Scholar
Hopkins, H., González, I. J., Polley, S. D., Angutoko, P., Ategeka, J., Asiimwe, C., Agaba, B., Kyabayinze, D. J., Sutherland, C. J., Perkins, M. D. and Bell, D. (2013). Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. Journal of Infectious Diseases 208, 645652.Google Scholar
Jeremiah, S., Janagond, A. B. and Parija, S. C. (2014). Challenges in diagnosis of Plasmodium knowlesi infections. Tropical Parasitology 4, 2530.Google Scholar
Kamau, E., Alemayehu, S., Feghali, K. C., Saunders, D. and Ockenhouse, C. F. (2013). Multiplex qPCR for detection and absolute quantification of malaria. PLoS ONE 8, e71539.Google Scholar
Kettelhut, M. M., Chiodini, P. L., Edwards, H. and Moody, A. (2003). External quality assessment schemes raise standards: evidence from the UKNEQAS parasitology subschemes. Journal of Clinical Pathology 56, 927932.Google Scholar
Kumar, A., Valecha, N., Jain, T. and Dash, A. P. (2007). Burden of malaria in India: retrospective and prospective view. American Journal of Tropical Medicine and Hygiene 77(6 Suppl.), 6978.Google Scholar
Laveran, A. (1880). Note sur un nouveau parasite trouvé dans le sang de plusieurs malades atteints de fièvre palustre. Bulletin de l'Académie nationale de medicine Paris 9, 12351236. Cited in Garnham P. C. C. (1966) Malaria Parasites and Other Haemosporidia, p.5. Blackwell Scientific Publications, Oxford, UK.Google Scholar
Manser, M., Olufsen, C., Andrews, N. and Chiodini, P. L. (2013). Estimating the parasitaemia of Plasmodium falciparum: experience from a national EQA scheme. Malaria Journal 12, 428.Google Scholar
McCutchan, T. F., Piper, R. C. and Makler, M. T. (2008). Use of malaria rapid diagnostic test to identify Plasmodium knowlesi infection. Emerging Infectious Diseases 14, 17501752.Google Scholar
Nothdurft, H. D., Jelinek, T. and Chiodini, P. L. (2008). Use of malaria rapid diagnostic tests for and by travellers. In Travelers’ Malaria, 2nd Edn (ed. Schlagenhauf-Lawlor, P.), pp. 300305. BC Decker Inc., Ontario, Canada.Google Scholar
Odaga, J., Sinclair, D., Lokong, J. A., Donegan, S., Hopkins, H. and Garner, P. (2014). Rapid diagnostic tests versus clinical diagnosis for managing people with fever in malaria endemic settings. Cochrane Database Systematic Reviews 17, CD008998.Google Scholar
Padley, D., Moody, A. H., Chiodini, P. L. and Saldanha, J. (2003). Use of a rapid, single-round, multiplex PCR to detect malarial parasites and identify the species present. Annals of Tropical Medicine and Parasitology 97, 131137.Google Scholar
Padley, D. J., Heath, A. B., Sutherland, C., Chiodini, P. L.Baylis, S. A., and Collaborative Study Group. (2008). Establishment of the 1st World Health Organization International Standard for Plasmodium falciparum DNA for nucleic acid amplification technique (NAT)-based assays. Malaria Journal 7, 139.Google Scholar
Polley, S. D., Mori, Y., Watson, J., Perkins, M. D., González, I. J., Notomi, T., Chiodini, P. L. and Sutherland, C. J. (2010). Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. Journal of Clinical Microbiology 48, 28662871.Google Scholar
Polley, S. D., González, I. J., Mohamed, D., Daly, R., Bowers, K., Watson, J., Mewse, E., Armstrong, M., Gray, C., Perkins, M. D., Bell, D., Kanda, H., Tomita, N., Kubota, Y., Mori, Y., Chiodini, P. L. and Sutherland, C. J. (2013). Clinical evaluation of a loop-mediated amplification kit for diagnosis of imported malaria. Journal of Infectious Diseases 208, 637644.Google Scholar
Poon, L. L., Wong, B. W., Ma, E. H., Chan, K. H., Chow, L. M., Abeyewickreme, W., Tangpukdee, N., Yuen, K. Y., Guan, Y., Looareesuwan, S. and Peiris, J. S. (2006). Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clinical Chemistry 52, 303306.Google Scholar
Singh, B. and Daneshvar, C. (2013). Human infections and detection of Plasmodium knowlesi. Clinical Microbiology Reviews 26, 165184.Google Scholar
Snounou, G., Viriyakosol, S., Jarra, W., Thaithong, S. and Brown, K. N. (1993). Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Molecular Biochemistry and Parasitology 58, 283292.CrossRefGoogle ScholarPubMed
Sutherland, C. J., Tanomsing, N., Nolder, D., Oguike, M., Jennison, C., Pukrittayakamee, S., Dolecek, C., Hien, T. T., do Rosário, V. E., Arez, A. P., Pinto, J., Michon, P., Escalante, A. A., Nosten, F., Burke, M., Lee, R., Blaze, M., Otto, T. D., Barnwell, J. W., Pain, A., Williams, J., White, N. J., Day, N. P., Snounou, G., Lockhart, P. J., Chiodini, P. L., Imwong, M. and Polley, S. D. (2010). Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally. Journal of Infectious Diseases 201, 15441550.Google Scholar
Van Hellemond, J. J., Rutten, M., Koelewijn, R., Zeeman, A. M., Verweij, J. J., Wismans, P. J., Kocken, C. H. and van Genderen, P. J. (2009). Human Plasmodium knowlesi infection detected by rapid diagnostic tests for malaria. Emerging Infectious Diseases 15, 14781480.Google Scholar
World Health Organisation (2000). New Perspectives: Malaria Diagnosis. Report of a Joint WHO/USAID Informal Consultation 25–27 October 1999. World Health Organisation, Geneva.Google Scholar
World Health Organisation (2009). Malaria Rapid Diagnostic Test Performance. Results of WHO product testing of malaria RDTs: Round 1 (2008). World Health Organisation, Geneva, Switzerland.Google Scholar
World Health Organisation (2010). Guidelines for the Treatment of Malaria, 2nd Edn. World Health Organisation, Geneva, Switzerland.Google Scholar
World Health Organisation (2012). Malaria Rapid Diagnostic Test Performance. Results of WHO product testing of malaria RDTs: 4 (2012). World Health Organisation, Geneva, Switzerland.Google Scholar