Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T17:03:06.608Z Has data issue: false hasContentIssue false

Magnesium deficiency protects against Babesia hylomysci and mice become resistant to rechallenge with the parasite regardless of diet fed

Published online by Cambridge University Press:  06 April 2009

P. Maurois
Affiliation:
INSERM U 42 (National Institute Health and Medical Research), 59650 Villeneuve d'Ascq, France and INRA (National Institute Agricultural Research), Human Nutrition Research Center, 63122 St-Genès-Champanelle, France
P.H. Delcourt
Affiliation:
INSERM U 42 (National Institute Health and Medical Research), 59650 Villeneuve d'Ascq, France and INRA (National Institute Agricultural Research), Human Nutrition Research Center, 63122 St-Genès-Champanelle, France
E. Gueux
Affiliation:
INSERM U 42 (National Institute Health and Medical Research), 59650 Villeneuve d'Ascq, France and INRA (National Institute Agricultural Research), Human Nutrition Research Center, 63122 St-Genès-Champanelle, France
Y. Rayssiguier
Affiliation:
INSERM U 42 (National Institute Health and Medical Research), 59650 Villeneuve d'Ascq, France and INRA (National Institute Agricultural Research), Human Nutrition Research Center, 63122 St-Genès-Champanelle, France

Summary

Mice were fed diets containing 960 mg (control), 100 mg (moderately Mg deficient) and 30 mg (severely Mg deficient) of Mg/kg. After 20 days, mice were inoculated with Babesia hylomysci (from Dr Wery, Anvers, Belgium). Significant increases in RBC Mg levels were observed following infection. All the control and moderately deficient mice died from infection, whereas the severely Mg-deficient diet protected mice against infection, as shown by a decrease in parasitaemia and mortality. The decrease in RBC Mg, modifications in membrane properties and increased oxidant stress are possible explanations for the protective effect of severe Mg deficiency. When mice were maintained for 2 months after inoculation on a severely Mg-deficient diet and were then switched to a control diet, all survived and had low parasitaemias. After 1 month, these mice were rechallenged with B. hylomysci and 89% survived.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M. & Miller, L. H. (1983). Structural alteration of the erythrocyte membrane during malarial parasite invasion and intra-erythrocytic development. In Malaria and the Red Cell. Ciba Foundation Symposium Vol. 94, pp. 4563, London: Pitman.CrossRefGoogle Scholar
Clark, I. A., Chaudri, G. & Cowden, W. B. (1989). Some roles of free radicals in malaria. Free Radical Biology Medicine 6, 315–21.CrossRefGoogle ScholarPubMed
Field, S. J., Rangachari, K., Dluzewski, A. R., Wilson, & Gratzer, W. B. (1992). Effect of intra-erythrocytic magnesium ions on invasion by Plasmodium falciparum. Parasitology 105, 1519.CrossRefGoogle ScholarPubMed
Flatman, P. W. (1988). The control of red cell magnesium. Magnesium Research 1, 511.Google ScholarPubMed
Freedman, A. M., Atrakchi, A. H., Cassidy, M. M. & Weglicki, W. B. (1990). Magnesium deficiency-induced cardiomyopathy: protection by vitamin E. Biochemical and Biophysical Research Communications 170, 1102–6.CrossRefGoogle ScholarPubMed
Freedman, A. M., Tong Mak, I., Stafford, R. E., Dickens, B. F., Cassidy, M. M., Muesing, R. A. & Weglicki, W. B. (1992). Erythrocytes from magnesium-deficient hamsters display an enhanced susceptibility to oxidative stress. American Journal of Physiology 262, 1371–5.CrossRefGoogle ScholarPubMed
Golenser, J., Marva, E. & Chevion, M. (1991). The survival of Plasmodium under oxidant stress. Parasitology Today 7, 142–6.CrossRefGoogle ScholarPubMed
Gorenflot, A., Brasseur, P., Precigout, E., L'hostis, M., Marchand, A. & Schrevel, J. (1991). Cytological and immunological responses to Babesia divergens in different hosts: ox, gerbil, man. Parasitology Research 77, 312.CrossRefGoogle ScholarPubMed
Gueux, E., Duchěne-Marullaz, P. & Rayssiguier, Y. (1988). Plasma and erythrocyte magnesium levels in French population. Magnesium Bulletin 10, 7780.Google Scholar
Gunther, T. & Vormann, J. (1989). Characterization of Mg2+ efflux from human, rat and chicken erythrocytes. FEBS Letters 250, 633–7.CrossRefGoogle ScholarPubMed
Hsiao, L., Howard, R. J., Aikawa, M. & Taraschi, T. F. (1991). Modification of host cell membrane lipid composition by the intra-erythrocytic human malaria parasite Plasmodium falciparum. The Biochemical Journal 274, 121–32.CrossRefGoogle ScholarPubMed
Levander, O. A., Ager, A. L. Jr, Morris, V. C. & May, R. G. (1989 a). Menhaden-fish oil in a vitamin E-deficient diet: protection against cloroquine-resistant malaria in mice. American Journal of Clinical Nutrition 50, 1237–9.CrossRefGoogle Scholar
Levander, O. A., Ager, A. L., Morris, V. C. & May, R. G. (1989 b). Qinghaosu, dietary vitamin E, selenium, and cold-liver oil: effect on the susceptibility of mice to the malarial parasite Plasmodium yoelii. American Journal of Clinical Nutrition 50, 346–52.CrossRefGoogle Scholar
Levine, N. D. (1973). The piroplasmasida. In Protozoan Parasites of Domestic Animals and of Man, 2nd Edn (ed. Levine, N. D.), pp. 317346. Minneapolis, Minnesota: Burgess Publishing Comp.Google Scholar
Levine, N. D., Corliss, J. O., Cox, F. E. G., Deroux, G., Grain, J., Honigberg, B. M., Leedale, G. F., Loeblich, A. R., Lom, J., Lynn, D., Merinfeld, E. G., Page, F. D., Poljansky, G., Sprague, V., Vavra, J. & Wallace, F. G. (1980). The committee on systematics and evolution of the society of protozoologists. A newly revised classification of the protozoa. Journal of Protozoology 27, 3758.CrossRefGoogle Scholar
Maguire, M. (1990). Magnesium: a regulated and regulatory cation. In Metal Ions in Biological Systems, Vol. 26 (ed. Sigel, H. & Sigel, A.), pp. 135153. New York: Marcel Dekker.Google Scholar
Maurois, P., Gueux, E. & Rayssiguier, Y. (1989). Protective effect of severe magnesium deficiency on Plasmodium chabaudi infection. Magnesium Research 2, 183–7.Google ScholarPubMed
Maurois, P., Gueux, E. & Rayssiguier, Y. (1993). Magnesium deficiency affects malaria susceptibility in mice. Journal of the American College of Nutrition 12, 21–5.CrossRefGoogle ScholarPubMed
McCoy, H. & Kenney, M. A. (1992). Magnesium and immune function: recent findings. Magnesium Research 5, 281–93.Google ScholarPubMed
Meldrum, S. C., Birkhead, G. S., White, D. J., Benach, J. L. & Morse, D. L. (1992). Human Babesiosis in New York State: an epidemiological description of 136 cases. Clinical Infectious Diseases 15, 1019–23.CrossRefGoogle ScholarPubMed
Rayssiguier, Y., Gueux, E. & Motta, C. (1991). Magnesium deficiency. Effects on fluidity and function of plasma and subcellular membranes. In Magnesium: A Relevant Ion (ed. Lasserre, B. & Durlach, J.), pp. 311319. London: John Libbey.Google Scholar
Rayssiguier, Y., Gueux, E. & Weiser, D. (1981). Effect of magnesium deficiency on lipid metabolism in rats fed a high carbohydrate diet. Journal of Nutrition 111, 1876–83.CrossRefGoogle ScholarPubMed
Rayssiguier, Y., Gueux, E., Bussiere, L., Durlach, J. & Mazur, A. (1993). Dietary magnesium affects susceptibility of lipoproteins and tissues to peroxidation in rats. Journal of the American College of Nutrition 12, 133–7.CrossRefGoogle ScholarPubMed
Snedecore, G. W. & Cochran, W. G. (1987). Statistical Methods. Ames: Iowa State University Press.Google Scholar
Tongyai, S., Rayssiguier, Y., Motta, C., Gueux, E., Maurois, P. & Heaton, F. W. (1989). Mechanism of increased erythrocyte membrane fluidity during magnesium deficiency in weaning rats. American Journal of Physiology 257, 270–6.CrossRefGoogle Scholar