Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T18:01:23.089Z Has data issue: false hasContentIssue false

Low diversity and high intra-island variation in prevalence of avian Haemoproteus parasites on Barbados, Lesser Antilles

Published online by Cambridge University Press:  23 July 2009

L. MARIA
Affiliation:
University of Missouri-St Louis, One University Blvd., Research Building R223, St Louis, MO 63121, USA
E. SVENSSON*
Affiliation:
University of Missouri-St Louis, One University Blvd., Research Building R223, St Louis, MO 63121, USA
ROBERT E. RICKLEFS
Affiliation:
University of Missouri-St Louis, One University Blvd., Research Building R223, St Louis, MO 63121, USA
*
*Corresponding author: Tel: +314 516 7985. Fax: +314 516 6233. E-mail: [email protected]

Summary

Common bird species were screened during May and June 2007 on Barbados for haemosporidian parasites (Haemosporida) of the genera Haemoproteus and Plasmodium to determine whether the low parasite diversity reported in previous studies might have reflected limited sampling. PCR screening and DNA sequencing revealed a single predominant lineage of Haemoproteus identified as H. coatneyi. Sixty-two out of 257 birds were infected with Haemoproteus spp. on Barbados in 2007. Fifty-nine of the infections were identified as H. coatneyi (lineage HC), the only lineage recovered in the previous study in 1993. Two of the infections recovered from the bananaquit (Coereba flaveola) were identified as Haemoproteus spp. (lineage HD), which is the prevalent haemosporidian parasite in C. flaveola on Grenada. We discuss the possibility of infrequent colonization events and absence of vectors as explanations for Barbados's low avian haemosporidian diversity. In our study, the parasites were absent from the southeast of the island, whereas they were abundant in several host species in the northwest. Accordingly, environmental and host population genetic differences were also investigated between the areas with and without parasites. No host genetic differences were found between the parasite-free and the parasite-afflicted regions. However, the parasite-free region is slightly warmer and drier, and it supports less vegetation than the parasite-afflicted region. The influence that this harsher environment may have on vector survival is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apanius, V., Yorinks, N., Bermingham, E. and Ricklefs, R. E. (2000). Island and taxon effects in parasitism and resistance of Lesser Antillean birds. Ecology 81, 19591969.CrossRefGoogle Scholar
Beadell, J. S., Ishtiaq, F., Covas, R., Melo, M., Warren, B. H., Atkinson, C. T., Bensch, S., Graves, G. R., Jhala, Y. V., Peirce, M. A., Rahmani, A. R., Fonseca, D. M. and Fleischer, R. C. (2006). Global phylogeographic limits of Hawaii's avian malaria. Proceedings of the Royal Society London, B 273, 29352944.Google ScholarPubMed
Belkin, J. N. and Heinemann, S. J. (1976). Collection records of the project “Mosquitoes in Middle America” 6. Southern Lesser Antilles: Barbados (BAR), Dominica (DOM), Grenada (GR, GRR), St. Lucia (LU), St. Vincent (VT). Mosquito Systematics 8, 237297.Google Scholar
Bennett, G. F., Montgomerie, F. and Seutin, G. (1992). Scarcity of haematozoa in bird breeding in the arctic tundra of North America. The Condor 94, 289292.CrossRefGoogle Scholar
Bensch, S. and Åkesson, S. (2003). Temporal and spatial variation of haematozoans in Scandinavian Willow warblers. The Journal of Parasitology 89, 388391.CrossRefGoogle Scholar
Bensch, S., Waldenström, J., Jonzén, N., Westerdahl, H., Hansson, B., Sejberg, D. and Hasselquist, D. (2007). Temporal dynamics and diversity of avian malaria parasites in a single host species. Journal of Animal Ecology 76, 112122.CrossRefGoogle Scholar
Buckley, P. A. and Buckley, F. G. (2004). Rapid speciation by a Lesser Antillean endemic, Barbados bullfinch Loxigilla barbadensis. Bulletin of the British Ornithologists' Club 124, 108123.Google Scholar
Buckley, P. A., Massiah, E. B., Hutt, M. B., Buckley, F. G. and Hutt, H. F. (2008). The birds of Barbados: an annotated checklist. British Ornithologists' Union Check-list No. 24. Peterborough, UK.Google Scholar
Burry-Caines, J. R. and Bennett, G. F. (1992) The Haemoproteidae (Apicomplexa: Haemosporina) of the avian families Fringillidae and Emberizidae s. l. Canadian Journal of Zoology 70, 11491160.CrossRefGoogle Scholar
Clement, M., Posada, D. and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 16571660.Google Scholar
Collins, F. H., Sakai, R. K., Vernick, K. D., Paskewitz, S., Seeley, D. C., Miller, L. H., Collins, W. E., Campbell, C. C. and Gwadz, R. W. (1986). Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234, 607610.CrossRefGoogle ScholarPubMed
Durrant, K. L., Beadell, J. S., Ishtiaq, F., Graves, G. R., Olson, S. L., Gering, E., Peirce, M. A., Milensky, C. M., Schmidt, B. K., Gebhard, C. and Fleischer, R. C. (2006). Avian haematozoa in South America: A comparison of temperate and tropical zones. Ornithological Monographs 60, 98111.CrossRefGoogle Scholar
Fallon, S. M., Bermingham, E. and Ricklefs, R. E. (2003 a). Island and taxon effects in parasitism revisited: Avian malaria in the Lesser Antilles. Evolution 57, 606615.Google ScholarPubMed
Fallon, S. M., Ricklefs, R. E., Swanson, B. L. and Bermingham, E. (2003 b). Detecting avian malaria: An improved polymerase chain reaction diagnostic. Journal of Parasitology 89, 10441047.CrossRefGoogle ScholarPubMed
Fallon, S. M., Ricklefs, R. E., Latta, S. C. and Bermingham, E. (2004). Temporal stability of insular avian malarial parasite communities. Proceedings of the Royal Society of London, B 271, 493500.CrossRefGoogle ScholarPubMed
Fallon, S. M., Bermingham, E. and Ricklefs, R. E. (2005). Host specialization and geographic localization of avian malaria parasites: A regional analysis in the Lesser Antilles. The American Naturalist 165, 466480.CrossRefGoogle ScholarPubMed
Freed, L. A., Cann, R. L., Goff, M. L., Kuntz, W. A. and Bodner, G. V. (2005). Increase in avian malaria at upper elevation in Hawai'i. T-he Condor 107, 753764.Google Scholar
Gager, A. B., del Rosario Loaiza, J., Dearborn, D. C. and Bermingham, E. (2008). Do mosquitoes filter the access of Plasmodium cytochrome b lineages to an avian host? Molecular Ecology 17, 25522561.Google Scholar
Gibb, C. E., Jones, J., Girvan, M. K., Barg, J. J. and Robertson, R. J. (2005). Geographic variation in prevalence and parasitemia of Haemoproteus paruli in the cerulean warbler (Dendroica cerulea). Canadian Journal of Zoology 83, 625629.CrossRefGoogle Scholar
Greiner, E. C., Bennett, G. F., White, E. M. and Coombs, R. C. (1975). Distribution of the avian hematozoa of North America. Canadian Journal of Zoology 53, 17621787.CrossRefGoogle ScholarPubMed
Greiner, E. C., Mo-Lee, C., Homan, E. J., González, J., Oviedo, M. T., Thompson, L. H. and Gibbs, E. P. J. (1993). Epidemiology of bluetongue in Central America and the Caribbean: Initial entomological findings. Medical and Veterinary Entomology 7, 309315.CrossRefGoogle ScholarPubMed
Helm-Bychowski, K. and Cracraft, J. (1993). Recovering phylogenetic signal from DNA sequences: Relationships within the Corvine assemblage (Class Aves) as inferred from complete sequences of the mitochondrial DNA Cytochrome-b gene. Molecular Biology and Evolution 10, 11961214.Google ScholarPubMed
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 19651978.CrossRefGoogle Scholar
Hunt, G. J., Tabachnick, W. J. and McKinnon, C. N. (1989). Environmental factors affecting mortality of adult Culicoides variipennis (Diptera: Ceratopogonidae) in the laboratory. Journal of the American Mosquito Control Association 5, 387391.Google Scholar
Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X. and Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences, USA 86, 61966200.Google Scholar
Little, R. and Earlé, R. (1995). Sandgrouse (Pterocleidae) and sociable weavers lack avian haematozoa in semi-arid regions of South Africa. Journal of Arid Environments 30, 367370.CrossRefGoogle Scholar
Lehane, M. J. (1991). Biology of Blood-Sucking Insects. Harper Collins Academic, London, UK.CrossRefGoogle Scholar
Lovette, I. J., Seutin, G., Ricklefs, R. E. and Bermingham, E. (1999). The assembly of an island fauna by natural invasion: Sources and temporal patterns in the avian colonization of Barbados. Biological Invasions 1, 3341.CrossRefGoogle Scholar
Martinsen, E. S., Perkins, S. L. and Schall, J. J. (2007). A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Molecular Phylogenetics and Evolution 47, 261273.CrossRefGoogle ScholarPubMed
Mellor, P. S., Boorman, J. and Baylis, M. (2000). Culicoides biting midges: their role as arbovirus vectors. Annual Review of Entomology 45, 307340.CrossRefGoogle ScholarPubMed
Mullens, B. A. and Rodriquez, J. L. (1992). Survival and vertical distribution of larvae of Culicoides variipennis (Diptera: Ceratopogonidae) in drying mud habitats. Journal of Medical Entomology 29, 745749.CrossRefGoogle ScholarPubMed
Mullens, B. A., Cardona, C. J., McClellan, L., Szijj, C. E. and Owen, J. P. (2006). Culicoides bottimeri as a vector of Haemoproteus lophortyx to quail in California, USA. Veterinary Parasitology 140, 3543.CrossRefGoogle ScholarPubMed
Olival, K. J., Stiner, E. O. and Perkins, S. L. (2007). Detection of Hepatocystis sp. in southeast Asian flying foxes (Pteropodidae) using microscopic and molecular methods. Journal of Parasitology 93, 15381540.CrossRefGoogle ScholarPubMed
Paterson, A. M. and Gray, R. D. (1997). Host-parasite co-speciation, host switching, and missing the boat. In Host-Parasite Evolution: General Principles and Avian Models (ed. Clayton, D. H. and Moore, J.), pp. 236250. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Perkins, S. (2001). Phylogeography of Caribbean lizard malaria: Tracing the history of vector-borne parasites. Journal of Evolutionary Biology 14, 3445.CrossRefGoogle ScholarPubMed
Price, P. (1990). Host populations as resources defining parasite community organization. In Parasite Communities: Patterns and Processes (ed. Esch, G. W., Bush, A. O. and Aho, J. M.), pp. 2140. Chapman and Hall Ltd, London, UK.Google Scholar
Purse, B. V., Tatem, A. J., Caracappa, S., Rogers, D. J., Mellor, P. S., Baylis, M. and Torina, A. (2004). Modelling the distributions of Culicoides bluetongue virus vectors in Sicily in relation to satellite-derived climate variables. Medical and Veterinary Entomology 18, 90101.CrossRefGoogle ScholarPubMed
Raffaele, H., Wiley, J., Garrido, O., Keith, A. and Raffaele, J. (1998). A Guide to the Birds of the West Indies. Princeton University Press, Princeton, NJ, USA.Google Scholar
Randall, R. E. (1970). Vegetation and environment on the Barbados coast. The Journal of Ecology 58, 155172.Google Scholar
Rawlings, P., Meiswinkel, R., Lauschange, K., Welton, N., Baylis, M. and Mellor, P. S. (2003). The distribution and species characteristics of the Culicoides biting midge fauna of South Africa. Ecological Entomology 28, 559566.CrossRefGoogle Scholar
Remsen, J. V. Jr. and Good, D. A. (1996). Misuse of data from mist-net captures to assess relative abundance in bird populations. The Auk 113, 381398.CrossRefGoogle Scholar
Ricklefs, R. E. (1992). Embryonic development period and the prevalence of avian blood parasites. Proceedings of the National Academy of Sciences, USA 89, 47224725.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. and Fallon, S. M. (2002). Diversification and host switching in avian malaria parasites. Proceedings of the Royal Society of London, B 269, 885892.Google Scholar
Ricklefs, R. E., Swanson, B. L., Fallon, S. M., Martínez-Abraín, A., Scheuerlein, A., Gray, J. and Latta, S. J. (2005). Community relationships of avian malaria parasites in southern Missouri. Ecological Monographs 75, 543559.CrossRefGoogle Scholar
Speed, R. C. (1994). Barbados and the Lesser Antilles forearc. In Caribbean Geology: An Introduction (ed. Donovan, S. K. and Jackson, T. A.), pp. 179192. University of the West Indies Publisher's Association, Kingston, Jamaica.Google Scholar
Super, P. E. and van Riper, C. III (1995). A comparison of avian hematozoan epizootiology in two California coastal scrub communities. Journal of Wildlife Diseases 31, 447461.CrossRefGoogle ScholarPubMed
Staats, C. M. and Schall, J. J. (1996). Malarial parasites (Plasmodium) of Anolis lizards: Biogeography in the Lesser Antilles. Biotropica 28, 388393.Google Scholar
Tella, J. L., Blanco, G., Forero, M. G., Gajón, Á., Donázar, J. A. and Hiraldo, F. (1999). Habitat, world geographic range, and embryonic development of hosts explain the prevalence of avian hematozoa at small spatial and phylogenetic scales. Proceedings of the National Academy of Sciences, USA 96, 17851789.CrossRefGoogle ScholarPubMed
Templeton, A., Crandall, K. A. and Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data: III. Cladogram estimation. Genetics 132, 619633.CrossRefGoogle ScholarPubMed
Valera, F., Carrillo, C. M., Barbosa, A. and Moreno, E. (2003). Low prevalence of haematozoa in Trumpeter finches Bucanetes githagineus from south-eastern Spain: Additional support for a restricted distribution of blood parasites in arid lands. Journal of Arid Environments 55, 209213.CrossRefGoogle Scholar
Valkiūnas, G. (2005). Avian Malaria Parasites and Other Haemosporidia. CRC Press, Boca Raton, FL, USA.Google Scholar
Wakelin, D. and Apanius, V. (1997). Immune defense: Genetic control. In Host-Parasite Evolution: General Principles and Avian Models (ed. Clayton, D. H. and Moore, J.), pp. 3058. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Warner, R. E. (1968). The role of introduced diseases in the extinction of the endemic Hawaiian avifauna. Condor 70, 101120.Google Scholar
Wellby, M., Baylis, M., Rawlings, P. and Mellor, P. S. (1996). Effect of temperature on survival and rate of virogenesis of African horse sickness virus in Culicoides variipennis sonorensis (Diptera: Ceratopogonidae) and its significance in relation to the epidemiology of the disease. Bulletin of Entomological Research 86, 715720.Google Scholar