Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T07:32:10.938Z Has data issue: false hasContentIssue false

Local climate aridity influences the distribution of thelastomatoid nematodes of the Australian giant burrowing cockroach

Published online by Cambridge University Press:  20 April 2007

A. R. JEX*
Affiliation:
School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Queensland, Australia
M. A. SCHNEIDER
Affiliation:
School of Integrative Biology, The University of Queensland, St Lucia, Queensland, Australia
H. A. ROSE
Affiliation:
School of Land, Water and Crop Sciences, The University of Sydney, Camperdown, New South Wales, Australia
T. H. CRIBB
Affiliation:
School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Queensland, Australia
*
*Corresponding author: Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia. E-mail: [email protected]

Summary

In this study, we examined the effects of local climate aridity on the richness and composition of the thelastomatoid (Nematoda: Oxyurida) guild parasitizing the Australian giant burrowing cockroach, Macropanesthia rhinoceros (Blattodea: Geoscapheinae). In total, 9 thelastomatoid species parasitized this cockroach in north-eastern Australia (Queensland). Local observed richness ranged from 3 species (in Cooktown, Magnetic Island, Maiden Springs and Whitsunday Island) to 7 species (in Rochford Scrub). The lowest richness occurred in both relatively wet and dry climates, and the highest richness was in moderate climates. Three species, Cordonicola gibsoni, Leidynemella fusiformis and Travassosinema jaidenae, were found at all 13 collection sites. One species, Geoscaphenema megaovum, was found exclusively in dry to moderate climates. The remaining species, Blattophila sphaerolaima, Coronostoma australiae, Desmicola ornata, Hammerschmidtiella hochi and Jaidenema rhinoceratum, were found in moderate climates only. We hypothesize that the egg is the stage in the thelastomatoid life-cycle most vulnerable to the effects of adverse climate and that the geographical distribution for each species is, in part, bound by environments that are too dry, resulting in egg desiccation, and by environments that are too wet, resulting in decreased oxygen uptake across the egg-shell and in osmotic lysing.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamson, M. L. (1984). Anatomical adaptation to haplodiplopoidy in the oxyuroid (Nematoda) Desmicola skrjabini n. sp. from a diplopod in Gabon. Annales de Parasitologie Humaine et Comparée 59, 9599.CrossRefGoogle Scholar
Adamson, M. L. (1989). Evolutionary biology of the Oxyurida (Nematoda): biofacies of a haplodiploid taxon. Advances in Parasitology 28, 175228.CrossRefGoogle ScholarPubMed
Anya, A. O. (1966). Studies on the biology of some oxyurid nematodes. I. Factors in the development of eggs of Aspiculuris tetraptera Schulz. Journal of Helminthology 40, 253260.CrossRefGoogle ScholarPubMed
Arora, V. K. (2002). The use of the aridity index to assess climate change effect on annual runoff. Journal of Hydrology 265, 164177.CrossRefGoogle Scholar
Brown, J. H. (1995). Macroecology, University of Chicago Press, Chicago.Google Scholar
Budyko, M. I. (1974). Climate and Life, Academic Press, Orlando.Google Scholar
Burnham, K. P. and Overton, W. S. (1978). Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65, 623633.CrossRefGoogle Scholar
Burnham, K. P. and Overton, W. S. (1979). Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927936.CrossRefGoogle Scholar
Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783791.CrossRefGoogle ScholarPubMed
Geller, E. R. (1944). [Epidemiology of enterobiasis] in Russian. Meditsinskaia Parasitologia i Parazitarnye Bolezni 5, 1623.Google Scholar
Grice, R. L. and Prociv, P. (1993). In vitro embryonation of Syphacia obvelata eggs. International Journal for Parasitology 23, 257260.CrossRefGoogle ScholarPubMed
Guégan, J.-F., Morand, S. and Poulin, R. (2005). Are there general laws in parasite community ecology? The emergence of spatial parasitology and epidemiology. In Parasitism and Ecosystems (ed. Thomas, F., Renaud, F. and Guégan, J.-F.), pp. 2242. Oxford University Press, Oxford.CrossRefGoogle Scholar
Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J.-F., Kaufman, D. M., Kerr, J. T., Mittlebach, G. C., Oberdorff, T., O'Brien, E. M., Porter, E. E. and Turner, J. R. G. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 31053117.CrossRefGoogle Scholar
Heltshe, J. and Forrester, N. E. (1983). Estimating species richness using the jackknife procedure. Biometrics 39, 111.CrossRefGoogle ScholarPubMed
Hunt, D. J. (2002). The African Rhigonematoidea (Nematoda: Rhigonematida). 2. Six new species of Rhigonema Cobb, 1989 (Rhigonematidae). Nematology 4, 803827.CrossRefGoogle Scholar
Jex, A. R., Schneider, M. A., Rose, H. A. and Cribb, T. H. (2005). The Thelastomatoidea (Nematoda: Oxyurida) of two sympatric Panesthiinae (Blattodea) from south-eastern Queensland, Australia: taxonomy, species richness and host specificity. Nematology 7, 543575.Google Scholar
Jex, A. R., Schneider, M. A., Rose, H. A. and Cribb, T. H. (2006). Thelastomatoidea (Nematoda: Oxyurida) of the Australian giant burrowing cockroach, Macropanesthia rhinoceros (Blattodea: Geoscapheinae). Nematology 8, 347357.CrossRefGoogle Scholar
Jex, A. R., Schneider, M. A., Rose, H. A. and Cribb, T. H. (2007). A comprehensive analysis of the biogeography of the thelastomatoid pinworms from Australian burrowing cockroaches (Blaberidae: Geoscapheinae, Panesthiinae): no evidence of coevolution. Parasitology (this issue).CrossRefGoogle ScholarPubMed
Kennedy, C. R., Hartvigsen, R. A. and Halvorsen, O. (1991). The importance of fish stocking in the dissemination of parasites throughout a group of reservoirs. Journal of Fish Biology 38, 541552.CrossRefGoogle Scholar
McSorley, R. (2003). Adaptations of nematodes to environmental stress. Florida Entomologist 86, 138142.CrossRefGoogle Scholar
Morand, S. and Guégan, J.-F. (2000). Distribution and abundance of parasite nematodes: ecological specialisation, phylogenetic constraint or simply epidemiology? Oikos 88, 563573.CrossRefGoogle Scholar
Poulin, R. (1998 a). Comparison of three estimators of species richness in parasite component communities. Journal of Parasitology 84, 485490.CrossRefGoogle ScholarPubMed
Poulin, R. (1998 b). Evolutionary Ecology of Parasites: from Individuals to Communities, Chapman and Hall, London, New York.Google Scholar
Poulin, R. (2003). The decay of similarity with geographical distance in parasite communities of vertebrate hosts. Journal of Biogeography 30, 16091615.CrossRefGoogle Scholar
Poulin, R. and Morand, S. (1999). Geographical distances and the similarity among parasite communities of conspecific host populations. Parasitology 119, 369374.CrossRefGoogle ScholarPubMed
Rohde, K. (1993). Ecology of Marine Parasites, CAB International, Wallingford, UK.CrossRefGoogle Scholar
Rosenzweig, M. L. (1995). Species Diversity in Space and Time, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Roth, L. M. (1977). A taxonomic revision of the Panesthiinae of the world I: The Panesthiinae of Australia (Dictyoptera: Blattodea: Blaberidae). Australian Journal of Zoology (Supplementary Series No.) 48, 1112.Google Scholar
Skrjabin, K. I., Schikhobalova, N. P. and Lagodovskaya, E. A. (1960). Oxyurata of Animals and Man; Part 1, Translated from Russian by the Israel Program of Scientific Translations, Jerusalem.Google Scholar
Smith, E. P. and van Belle, G. (1984). Nonparametric estimation of species richness. Biometrics 40, 119129.CrossRefGoogle Scholar
Walker, J. A., Rugg, D. and Rose, H. A. (1994). Nine new species of Geoscapheinae (Blattodea: Blaberidae) from Australia. Memoirs of the Queensland Museum 35, 263284.Google Scholar
Walther, B. A. and Morand, S. (1998). Comparative performance of species richness estimation methods. Parasitology 116, 395405.CrossRefGoogle ScholarPubMed