Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T22:06:34.921Z Has data issue: false hasContentIssue false

Lineage-specific expansion and loss of tyrosinase genes across platyhelminths and their induction profiles in the carcinogenic oriental liver fluke, Clonorchis sinensis

Published online by Cambridge University Press:  06 June 2017

SEON-HEE KIM
Affiliation:
Department of Microbiology, Gachon University College of Medicine, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
YOUNG-AN BAE*
Affiliation:
Department of Microbiology, Gachon University College of Medicine, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
*
*Corresponding author: Department of Microbiology, Gachon University College of Medicine, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea. E-mail: [email protected]

Summary

Tyrosinase provides an essential activity during egg production in diverse platyhelminths by mediating sclerotization of eggshells. In this study, we investigated the genomic and evolutionary features of tyrosinases in parasitic platyhelminths whose genomic information is available. A pair of paralogous tyrosinases was detected in most trematodes, whereas they were lost in cyclophyllidean cestodes. A pseudophyllidean cestode displaying egg biology similar to that of trematodes possessed an orthologous gene. Interestingly, one of the paralogous tyrosinases appeared to have been multiplied into three copies in Clonorchis sinensis and Opisthorchis viverrini. In addition, a fifth tyrosinase gene that was minimally transcribed through all developmental stages was further detected in these opisthorchiid genomes. Phylogenetic analyses demonstrated that the tyrosinase gene has undergone duplication at least three times in platyhelminths. The additional opisthorchiid gene arose from the first duplication. A paralogous copy generated from these gene duplications, except for the last one, seemed to be lost in the major neodermatans lineages. In C. sinensis, tyrosinase gene expressions were initiated following sexual maturation and the levels were significantly enhanced by the presence of O2 and bile. Taken together, our data suggest that tyrosinase has evolved lineage-specifically across platyhelminths related to its copy number and induction mechanism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abascal, F., Zardoya, R. and Posada, D. (2005). ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 21042105.Google Scholar
Aguilera, F., McDougall, C. and Degnan, B. M. (2013). Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and loss across the metazoa. BMC Evolutionary Biology 13, 96.Google Scholar
Andreini, C., Banci, L., Bertini, I. and Rosato, A. (2008). Occurrence of copper proteins through the three domains of life: a bioinformatics approach. Journal of Proteome Research 7, 209216.Google Scholar
Arfin, M. and Nizami, W. A. (1986). Chemical nature and mode of stabilization of eggshell/capsule of some cyclophyllidean cestodes. Journal of Helminthology 69, 105112.CrossRefGoogle Scholar
Bae, Y. A., Cai, G. B., Kim, S. H., Sohn, W. M. and Kong, Y. (2013). Expression pattern and substrate specificity of Clonorchis sinensis tyrosinases. International Journal for Parasitology 43, 891900.CrossRefGoogle ScholarPubMed
Bae, Y. A., Kim, S. H., Ahn, C. S., Kim, J. G. and Kong, Y. (2015). Molecular and biochemical characterization of Paragonimus westermani tyrosinase. Parasitology 142, 807815.Google Scholar
Bouvard, V., Baan, R., Straif, K., Grosse, Y., Secretan, B., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Freeman, C., Galichet, L. and Cogliano, V.: WHO International Agency for Research on Cancer Monograph Working Group (2009). A review of human carcinogens – part B: biological agents. Lancet Oncology 10, 321322.Google Scholar
Burmester, T. (2002). Origin and evolution of arthropod hemocyanins and related proteins. Journal of Comparative Physiology 172, 95107.Google ScholarPubMed
Cai, G. B., Bae, Y. A., Zhang, Y., He, Y., Jiang, M. S. and He, L. (2009). Expression and characterization of two tyrosinase from the trematode Schistosoma japonicum . Parasitology Research 104, 601609.Google Scholar
Cho, S. Y., Kong, Y., Yun, D. H., Kang, S. Y., Kim, L. S., Chung, Y. B. and Yang, H. J. (2000). Persisting antibody reaction in paragonimiasis after praziquantel treatment is elicited mainly by egg antigens. Korean Journal of Parasitology 38, 7584.Google Scholar
Cordingley, J. S. (1987). Trematode eggshells: novel protein biopolymers. Parasitology Today 3, 341344.Google Scholar
Decker, H. and Tuczek, F. (2000). Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends in Biochemical Sciences 25, 392397.Google Scholar
Eckelbarger, K. J. and Grassle, J. P. (1983). Ultrastructural differences in the eggs and ovarian follicle cells of Capitella (Polychaeta) sibling species. Biological Bulletin 2, 379393.Google Scholar
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797.Google Scholar
Esposito, R., D'Aniello, S., Squarzoni, P., Pezzotti, M. R., Ristoratore, F. and Spagnuolo, A. (2012). New insights into the evolution of metazoan tyrosinase gene family. PLoS ONE 7, e35731.Google Scholar
Fairfax, K. C., Amiel, E., King, I. L., Freitas, T. C., Mohrs, M. and Pearce, E. J. (2012). IL-10R blockade during chronic Schistosomiasis mansoni results in the loss of B cells from the liver and the development of severe pulmonary disease. PLoS Pathogens 8, e1002490.CrossRefGoogle ScholarPubMed
Fitzpatrick, J. M., Hirai, Y., Hirai, H. and Hoffmann, K. F. (2007). Schistosome egg production is dependent upon the activities of two developmentally regulated tyrosinases. FASEB Journal 21, 823835.Google Scholar
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W. and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307321.CrossRefGoogle ScholarPubMed
Hanna, R. E. B., Cromie, L., Taylor, S. M. and Couper, A. (2006). The effect of a parenteral ivermectin/closantel injection on the growth and reproductive development of early immature Fasciola hepatica in cattle. Veterinary Parasitology 142, 7890.Google Scholar
Hoffmann, K. E., Wynn, T. A. and Dunne, D. W. (2002). Cytokine-mediated host responses during schistosome infection: walking the fine line between immunological control and immunopathology. Advances in Parasitology 52, 265307.Google Scholar
Huang, X. and Madan, A. (1999). CAP3: a DNA sequence assembly program. Genome Research 9, 868877.Google Scholar
Ishida, S. and Teshirogi, W. (1986). Eggshell formation in polyclads (Turbellaria). Hydrobiologia 132, 127135.Google Scholar
Jaenicke, E. and Decker, H. (2004). Functional changes in the family of type3 copper proteins during evolution. European Journal of Chemical Biology 5, 163169.Google Scholar
Johri, L. N. (1957). A morphological and histochemical study of egg formation in a cyclophyllidean cestodes. Parasitology 47, 2129.Google Scholar
Keiser, J. and Utzinger, J. (2009). Food-borne trematodiases. Clinical Microbiology Reviews 22, 466483.Google Scholar
Kelly, D. H. and von Lichtenberg, F. (1970). “Abnormal” schistosome oviposition. Origin of aberrant shell structures and their appearance in human tissues. American Journal of Pathology 60, 271288.Google Scholar
Kim, T. I., Yoo, Y. G., Kwak, B. K., Seok, J. W. and Hong, S. J. (2011). Racing of the bile-chemotactic migration of juvenile Clonorchis sinensis in rabbits by PET-CT. PLoS Neglected Tropical Diseases 5, e1414.CrossRefGoogle Scholar
Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods 25, 402408.Google Scholar
Lun, Z. R., Gasser, R. B., Lai, D. H., Li, A. X., Zhu, X. Q., Yu, X. B. and Fang, Y. Y. (2005). Clonorchiasis: a key foodborne zoonosis in China. Lancet Infectious Diseases 5, 3141.Google Scholar
Mount, S. M. (1982). A catalogue of splice junction sequences. Nucleic Acids Research 10, 459472.Google Scholar
Müller, W. E. G., Grebenjuk, V. A., Thakur, N. L., Thakur, A. N., Batel, R., Krasko, A., Müller, I. M. and Breter, H. J. (2004). Oxygen-controlled bacterial growth in the sponge Suberites domuncula: toward a molecular understanding of the symbiotic relationships between sponge and bacteria. Applied Environmental Microbioogy 70, 23322341.Google Scholar
Nicholas, K. B. and Nicholas, H. B. Jr. (1997). GeneDoc: a tool for editing and annotation multiple sequence alignments. Distributed by the authors. http://iubio.bio.indiana.edu/soft/molbio/ibmpc/genedoc-readme.html.Google Scholar
Page, R. D. (1996). Tree view: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357358.Google Scholar
Robinson, M. W., Colhoun, L. M., Fairweather, I., Brennan, G. P. and Waite, J. H. (2001). Development of the vitellaria of the liver fluke, Fasciola hepatica in the rat host. Parasitology 123, 509518.Google Scholar
Ronquist, F. and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Sánchez-Ferrer, A., Rodríguez-López, J. N., García-Cánovas, F. and García -Carmona, F. (1995). Tyrosinase: a comprehensive review of its mechanism. Biochimica Biophysica Acta 1247, 111.Google Scholar
Shin, H. R., Oh, J. K., Masuyer, E., Curado, M. P., Bouvard, V., Fang, Y. Y., Wianqnon, S., Sripa, B. and Hong, S. T. (2010). Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Science 101, 579585.Google Scholar
Shinn, G. L. (1993). Formation of egg capsules by flatworms (Phylum Platyhelminthes). Transactions of the American Microscopical Society 112, 1834.Google Scholar
Smyth, J. D. and Halton, D. W. (1983). The Physiology of Trematodes. Cambridge University Press, Cambridge.Google Scholar
Smyth, J. D. and McManus, D. P. (1989). The Physiology and Biochemistry of Cestodes. Cambridge University Press, Cambridge.Google Scholar
Swiderski, Z. and Xylander, W. E. R. (2000). Vitellocytes and vitellogenesis in cestodes in relation to embryonic development, egg production and life cycle. International Journal for Parasitology 30, 805817.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Tsai, I. J., Zarowiecki, M., Holroyd, N., Garciarrubio, A., Sanchez-Flores, A., Brooks, K. L., Tracey, A., Bobes, R. J., Fragoso, G., Sciutto, E., Aslett, M., Beasley, H., Bennett, H. M., Cai, J., Camicia, F., Clark, R., Cucher, M., De Silva, N., Day, T. A., Deplazes, P., Estrada, K., Fernández, C., Holland, P. W., Hou, J., Hu, S., Huckvale, T., Hung, S. S., Kamenetzky, L., Keane, J. A., Kiss, F., et al. (2013). The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496, 5763.Google Scholar
van Gelder, C. W. G., Flurkey, W. H. and Wichers, H. J. (1997). Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45, 13091323.Google Scholar
Wang, X., Chen, W., Huang, Y., Sun, J., Men, J., Liu, H., Luo, F., Guo, L., Lv, X., Deng, C., Zhou, C., Fan, Y., Li, X., Huang, L., Hu, Y., Liang, C., Hu, X., Xu, J. and Yu, X. (2011). The draft genome of the carcinogenic human liver fluke Clonorchis sinensis . Genome Biology 12, R107.Google Scholar
Yang, X., Zhao, Y., Wang, L., Feng, H., Tan, L., Lei, W., Zhao, P., Hu, M. and Fang, R. (2015). Analysis of the complete Fischoederius elongates (Paramphistomidae, Trematoda) mitochondrial genome. Parasites & Vectors 8, 279.CrossRefGoogle ScholarPubMed
Supplementary material: File

Kim and Bae supplementary material

Kim and Bae supplementary material 1

Download Kim and Bae supplementary material(File)
File 38.8 KB
Supplementary material: File

Kim and Bae supplementary material

Kim and Bae supplementary material 2

Download Kim and Bae supplementary material(File)
File 907.4 KB
Supplementary material: File

Kim and Bae supplementary material

Kim and Bae supplementary material 3

Download Kim and Bae supplementary material(File)
File 15.4 KB