Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T17:07:05.318Z Has data issue: false hasContentIssue false

The life history and bionomics of Diclidophora denticulata (Trematoda: Monogenea)

Published online by Cambridge University Press:  06 April 2009

Helga M. T. Frankland
Affiliation:
University College of North Staffordshire

Extract

1. Cerfontaine's (1896) description of the egg is confirmed. The eggs are not retained on the gills during development.

2. Maturation of the oocyte takes place after egg formation. The haploid number of chromosomes is 9.

3. The onset of embryonic development is related to the time of egg formation or sperm entry. Cleavage is total and slightly unequal, leading to the formation of a morula in which there are no germ layers. The larval gut is formed by epiboly round a mass of yolk which becomes incorporated in mid-body. Larval organs and a partially ciliated epithelium are differentiated in situ.

4. During embryonic development yolk is broken down and absorbed, some being incorporated in the body.

5. Hatching does not seem to result from any special stimulus. Mechanical pressure by the larva forces off the operculum, but secretions may weaken the suture.

6. The free-swimming larva is gyrodactyloid with a winged haptor bearing four pairs of lateral, one pair of postero-lateral and one pair of median hooks. Four pairs of flame cells are present and one pair of longitudinal, lateral, excretory ducts, which open antero-laterally. The larva swims by ciliary action and does not respond to jarring, light and shade stimuli, or, when vigorous, to the presence of the excised gill of the host. Tired larvae are doubtfully attracted by host gill tissue. Larval haptorial type is thought to be determined phylogenetically rather than as a result of adaptation to the type of host tissue to which the larva attaches itself.

7. The larva attaches itself to the host's gill and sloughs off the ciliated coat. Growth follows with the development of the adult clamps in pairs, starting posteriorly, each pair replacing a pair of lateral, larval hooks. Primordia of the reproductive organs are laid down in the larval stage, but are only finally elaborated when the adult form has been attained. Maturity is not reached at a definite size and the ovary and testes mature simultaneously.

8. Feeding is at least partly on the host's blood.

9. The longest time which may elapse between formation and laying of an egg is about 5 hr. The average time taken for embryonic development is 18·3 days at 14·25° C., but temperature affects the developmental rate. Ciliated larvae survive about 24 hr. in the absence of a host. The second larval stage is reached between 5 and 13 days after hatching, the third larval stage after more than 38 days. The immature stage is thought to be reached within 3 months and the adult stage within 6 months.

10. Reproduction occurs throughout the year. The animal is functionally hermaphrodite at all times once maturity is reached.

11. A certain degree of osmo-regulation is possible in adults, but this does not extend to ciliated larvae.

12. Adults rest along a gill filament on its inner face and do not move about. Larvae are more ready to move.

13. The average number of flukes per host is 2·24. The 1st and 2nd pairs of gills carry three times as many flukes as the 3rd and 4th pairs.

14. The host suffers no apparent harm from the presence of the flukes.

15. Premunition of Gadus virens against Diclidophora denticulata does not occur. Age resistance is probably developed to the extent that larvae cannot establish themselves on older fish and is probably due to mechanical difficulties and changed habits of the host. The ability of this fluke to parasitize species of Gadus does not extend to G. callarias.

16. D. denticulata is recorded for the first time from St Andrews Bay and the Firth of Forth.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvey, C. H. (1933). The life-cycle of Sphyranura oligorchis. J. Parasit. 20, 140.Google Scholar
Alvey, C. H. (1936). The morphology and development of the monogenetic trematode, Sphyranura oligorchis Alvey, 1933, and the description of S. polyorchis n.sp. Parasitology, 28, 229–53.CrossRefGoogle Scholar
Baer, J. G. (1934). L'Adaptation des helminthes à leur hôtes. Bull. Soc. neuchâtel. Sci. nat. 58, 5776.Google Scholar
Baylis, H. A. & Jones, E. I. (1933). Some records of parasitic worms from marine fishes at Plymouth. J. Mar. Biol. Ass. U.K. 18, 627–34.CrossRefGoogle Scholar
Bertelsen, E. (1942). Contributions to the biology of the coal-fish (Gadus virens L.) in Faroe waters. Medd. Komm. Havundersøg, Kbh., 11, no. 2, 168.Google Scholar
Braun, M. (1893). Bronn's Klassen und Ordnungen des Thierreichs. Bd. 4. Platyhelminthes: I. Trematodes, pp. 306924. Leipzig.Google Scholar
Cerfontaine, P. (1896). Contribution à l'étude des Octocotylidés. Arch. Biol. Paris, 14, 497560.Google Scholar
Cerfontaine, P. (1898). Contribution à l'étude des Octocotylidés: Nouvelles observations sur le genre Dactylocotyle et description du Dactylocotyle luscae. Arch. Biol., Paris, 15, 301–28.Google Scholar
Cooper, A. R. (1915). Trematodes from marine and freshwater fishes, including one species of ectoparasitic turbellarian. Trans. Roy. Soc. Can., Sect. 4, Ser. 3, 9, 181205.Google Scholar
Dawes, B. (1946). The Trematoda. Cambridge University Press.Google Scholar
Fischthal, J. H. & Allison, L. N. (1941). Acolpenteron ureteroecetes Fischthal and Allison, 1940, a monogenetic trematode from the ureters of the black basses, with a revision of the family Calceostomatidae (Gyrodactyloidea). J. Parasit. 27, 517–24.Google Scholar
Fuhrmann, O. (1928). Kükenthal u. Krumbach: Handbuch der Zoologie—Vermes: Trematoda, pp. 1140. Berlin and Leipzig.Google Scholar
Gallien, L. (1934). Sur la larve de Dactylocotyle luscae v. Ben. and Hesse, trematode monogénètique marin. Bull. Soc. zool. Fr. 59, 68.Google Scholar
Gallien, L. (1935). Recherches experimentale sur le dimorphisme évolutif et la biologie de Polystomum integerrimum Froel. Trav. Sta. zool. Wimereux, 12, 1181.Google Scholar
Gallien, L. & Le Calvez, J. (1947). Description de la larve d'Octobothrium scombri van Beneden & Hesse, trematode monogénètique marin. Bull. Soc. zool. Fr. 72, 76–8.Google Scholar
Gatenby, J. B. & Painter, T. S. (1937). The Microtomist's Vade Mecum. London.Google Scholar
Gille, K. (1914). Untersuchung über die Eireifung, Befruchtung und Zellteilung von Gyrodactylus elegans v. Nordmann. Arch. Zellforsch. 12, 415–56.Google Scholar
Goldschmidt, R. (1902). Untersuchung über die Eireifung, Befruchtung und Zelltheilung bei Polystomum integerrimum Rud. Z. wiss. Zool. 71, 397444.Google Scholar
Goldschmidt, R. (1905). Eireifung, Befruchtung und Embryonalentwicklung des Zoogonus mirus Lss. Zool. Jb. 21, 607–54.Google Scholar
Goto, S. (1895). Studies on the ectoparasitic trematodes of Japan. J. Coll. Sci. Tokyo, 8, 1273.Google Scholar
Gower, W. C. (1939). Modified stain and procedure for trematodes. Stain Tech. 14, 31–2.CrossRefGoogle Scholar
Gröben, G. (1940). Beobachtungen über die Entwicklung verschiedener Arten von Fisch-schmarotzern aus der Gattung Dactylogyrus. Z. Parasit. 11, 611–36.CrossRefGoogle Scholar
Halkin, H. (1901). Recherches sur la maturation, la fécondation et le développement du Polystomum integerrimum. Arch. Biol., Paris, 18, 291363.Google Scholar
Henneguy, L. F. (1906). Recherches sur le mode de formation de l'œuf éctolécithe du Distomum hepaticum. Arch. Anat. micr. 9, 4788.Google Scholar
Hess, W. N. (1928). The life-history and control of Dactylogyrus sp. J. Parasit. 15, 138–9.Google Scholar
Hess, W. N. (1930). Controls of external fluke parasites on fish. J. Parasit. 16, 131–6.CrossRefGoogle Scholar
Hyman, L. H. (1951). The Invertebrata, Vol. II. Platyhelminthes and Rhynchocoela, New York.Google Scholar
Jahn, T. L. & Kuhn, L. R. (1932). The life-history of Epibdella melleni MacCallum, 1927, a monogenetic trematode parasitic on marine fishes. Biol. Bull., Woods Hole, 62, 89111.Google Scholar
Jones, E. I. (1933). Fertilization and egg-formation in a digenetic trematode, Podocotyle atomon. Parasitology, 24, 545–7.CrossRefGoogle Scholar
Katheriner, L. (1904). Über die Entwicklung von Gyrodactylus elegans v. Ndm. (Abstract). Zool. Jb. (suppl.), 7, 519–51.Google Scholar
Kulwieć, Z. (1927). Untersuchung an Arten des Genus Dactylogyrus Diesing. Bull. Int. Acad. Cracovie (Pol. Sci. Let.), Sci. Nat., Ser. B, (1/2) 113144.Google Scholar
Kulwieć, Z. (1929). Observations sur le développement de Dactylogyrus vastator Nyb. Arch. Hydrobiol. Ichthiol. 4, 277–86.Google Scholar
Langeron, M. (1925). Précis de Microscopie. Paris.Google Scholar
Linton, E. (1901). Parasites of fishes of the Wood's Hole region. Bull. U.S. Fish. Comm. 1899, 19, 405–92.Google Scholar
Little, P. A. (1929). The trematode parasites of Irish marine fishes. Parasitology, 21, 2230.Google Scholar
Llewellyn, J. (1954). Observations on the food and the gut pigment of the Polyopisthocotylea (Trematoda: Monogenea). Parasitology, 44, 428–37.Google Scholar
MacCallum, G. A. (1913). Fertilization and egg-laying in Microcotyle stenotomi. Science, N.S. 37, 340–1.Google Scholar
Manter, H. W. (1926). Some North American fish trematodes. Illinois biol. Monogr. 10, no. 2, 1138.Google Scholar
Marine Biological Association (1931). Plymouth Marine Fauna. Plymouth.Google Scholar
Nicoll, W. (1915). A list of the trematode parasites of British marine fishes. Parasitology, 7, 339–78.Google Scholar
Nigrelli, R. F. (1937). Further studies on the susceptibility and acquired immunity of marine fishes to Epibdella melleni, a monogenetic trematode. Zoologica, 22, 185192.Google Scholar
Nigrelli, R. F. & Breder, C. M. Jr., (1934). The susceptibility and immunity of certain fishes to Epibdella melleni, a monogenetic trematode. J. Parasit. 20, 258–69.CrossRefGoogle Scholar
Odhner, T. (1913). Noch einmal die Homologien der weiblichen Genitalwege der monogenen Trematoden. Zool. Anz. 41, 558–9.Google Scholar
Olsson, P. (1875). Bidrag till Skandinaviens Helminthfauna—I. K. svenska VetenskAkad. Handl. F. 14, Art. 1, 135.Google Scholar
Pantin, C. F. A. (1946). Microscopical Technique for Zoologists. Cambridge University Press.Google Scholar
Paul, A. A. (1938). Life-history studies of North American fresh-water polystomes. J. Parasit. 24, 489510.CrossRefGoogle Scholar
Price, E. W. (1938). North American monogenetic trematodes: II. The families Monocotylidae, Microbothriidae, Acanthocotylidae and Udonellidae (Capsaloidea) cont. J. Wash. Acad. Sci. 28, 183–98.Google Scholar
Price, E. W. (1943). North American monogenetic trematodes: VI. The family Diclidophoridae (Diclidophoroidea). J. Wash. Acad. Sci. 33, 4454.Google Scholar
Rees, G. (1939). Studies on the germ-cell cycle of the digenetic trematode, Parorchis acanthus—I. Anatomy of the genitalia and gametogenesis in the adult. Parasitology, 31, 417–33.Google Scholar
Rees, G. (1953). Some parasitic worms from fishes off the coast of Iceland. III. Monogenea, Nematoda, Acanthocephala. Parasitology, 43, 193–8.Google Scholar
Rees, G. & Llewellyn, J. (1941). A record of the trematode and cestode parasites of fishes from the Porcupine Bank, Irish Atlantic Slope, and Irish Sea. Parasitology, 33, 390–6.Google Scholar
Remley, L. W. (1942). Morphology and life-history studies of Microcotyle spinicirrus MacCallum, 1918, a monogenetic trematode parasitic on the gills of Aplodinotus grunniens. Trans. Amer. Micr. Soc. 61, 141–55.Google Scholar
Rodgers, L. O. (1941). Diplorchis scaphiopi, a new polystomatid monogenean fluke from the spade foot toad. J. Parasit. 27, 153–7.CrossRefGoogle Scholar
Sanders, D. F. (1944). A contribution to the knowledge of the Microcotylidae of Western Australia. Trans. Roy. Soc. S. Aust. 68, 6781.Google Scholar
Schubman, W. (1905). Über die Einbildung und Embryonalentwicklung von Fasciola hepatica L. (Distomum hepaticum Retz). Zool. Jb. 21, 571606.Google Scholar
Siwak, J. (1932). Ancyrocephalus vistulensis n.sp., un nouveau trématode parasite du silure (Silurus glanis L.). Bull. Int. Acad. Cracovie (Pol. Sci. Let.), Sci. Nat. Ser. B II (7–10), 669–79.Google Scholar
Sproston, N. G. (1945). The genus Kuhnia n.g. (Trematoda: Monogenea). An examination of the value of some specific characters, including factors of relative growth. Parasitology, 36, 176–90.Google Scholar
Sproston, N. G. (1946). A synopsis of the monogenetic trematodes. Trans. Zool. Soc. Lond. 25, 185600.CrossRefGoogle Scholar
Stafford, J. (1904). Trematodes from Canadian fishes. Zool. Anz. 27, 481–95.Google Scholar
Taliaferro, W. H. (1940). The mechanism of acquired immunity in infections with parasitic worms. Phys. Rev. 20, 469–92.Google Scholar
Wilde, J. (1936). Dactylogyrus macracanthus Wegener als Krankheitserreger auf den Kiemen der Schleie (Tinea tinea L.). Z. Parasit. 9, 203–36.Google Scholar
Willey, C. H. (1941). The life-history and bionomics of the trematode, Zygocotyle lunata (Paramphistomidae). Zoologica, 26, 6588.Google Scholar
Zeller, E. (1872). Untersuchungen über die Entwicklung des Diplozoon paradoxum. Z. wiss. Zool. 22, 168–80.Google Scholar