Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T08:12:44.758Z Has data issue: false hasContentIssue false

L-Glutamine: an amino acid required for maintenance of the tegumental membrane potential of Schistosoma mansoni

Published online by Cambridge University Press:  06 April 2009

Carolyn A. Lane
Affiliation:
Departments of Pharmacology and Toxicology, and Zoology, Michigan State University, East Lansing, Michigan 48824, USA
R. A. Pax
Affiliation:
Departments of Pharmacology and Toxicology, and Zoology, Michigan State University, East Lansing, Michigan 48824, USA
J. L. Bennett
Affiliation:
Departments of Pharmacology and Toxicology, and Zoology, Michigan State University, East Lansing, Michigan 48824, USA

Summary

The tegumental membrane potential (–63±2·9 mV) of adult male Schistosoma mansoni in RPMI-1640 is significantly depolarized (–26±7·3 mV) when the parasite is incubated in inorganic media (Hank's Balanced Saline or RPMI-1640 without organic constituents). Of 9 amino acids (L-glutamine, D-glutamine, L-arginine, L-proline, L-aspartate, L-glutamate, L-asparagine, L-isoleucine and L-methionine) L-glutamine alone is sufficient to repolarize the membrane potential to a value (–56±4·5 mV) not significantly different from that found in RPMI-1640. Repolarization by glutamine is dose-dependent, with significant effects obtained as low as 0·10 mM. The concentration of phosphate in the medium also significantly alters the membrane potential. Physiological levels of phosphate (5·6 mM) are necessary in conjunction with L-glutamine to obtain the full repolarization of the membrane potential. In the absence of organic constituents, the membrane potential is strongly dependent on the external medium pH. When L-glutamine is present in the medium, the membrane potential becomes virtually independent of the external pH.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altman, P. L. & Dittmer, D. S. (1971). Blood and Other Body Fluids. Bethesda: Federation of American Societies for Experimental Biology.Google Scholar
Asch, H. & Read, C. (1975). Membrane transport in Schistosoma mansoni: transport of amino acids by adult males. Experimental Parasitology 38, 123–35.Google Scholar
Bennett, J. L. & Seed, J. L. (1977). Characterization and isolation of concanavalin A binding sites from the epidermis of S. mansoni. Journal of Parasitology 63, 250–8.CrossRefGoogle ScholarPubMed
Bruce, J. I., Russ, M. D., Belusko, R. J. & Werner, J. K. (1972). Schistosoma mansoni and Schistosoma japonicum: utilization of amino acids. International Journal for Parasitology 2, 425–30.CrossRefGoogle ScholarPubMed
Chappell, L. H. & Walker, E. (1982). Schistosoma mansoni: incorporation and metabolism of protein amino acids in vitro. Comparative Biochemistry and Physiology 73B, 701–8.Google ScholarPubMed
Cornford, E. M. & Odlendorf, W. (1979). Transintegumental uptake of metabolic substrates in male and female Schistosoma mansoni. Journal of Parasitology 65, 357–63.Google Scholar
Fetterer, R. H., Pax, R. A. & Bennett, J. L. (1980). Schistosoma mansoni: characterization of the electrical potential from the tegument of adult males. Experimental Parasitology 49, 353–65.Google Scholar
Fetterer, R. H., Pax, R. A. & Bennett, J. L. (1981). Na–K transport, motility and tegumental membrane potential in adult male Schistosoma mansoni. Parasitology 82, 97109.CrossRefGoogle ScholarPubMed
Heinz, E. & Geek, P. (1978). The electrical potential difference as a driving force in Na+-linked cotransport of organic solutes. In Membrane Transport Processes, vol. 1 (ed. Hoffman, J. F.), pp. 1318. New York: Raven Press.Google Scholar
Hochachka, P. W. & Mommsen, T. P. (1983). Protons and anaerobiosis. Science 219, 1391–7.CrossRefGoogle ScholarPubMed
Holcenberg, J. S. (1985). Glutaminase from Acinetobacter glutaminificans. In Glutamate, Glutamine, Glutathione, and Related Compounds, (ed. Meister, A.). Methods in Enzymology 113, 257–63.CrossRefGoogle Scholar
Horrocks, D. L. (1974). Applications of Liquid Scintillation Counting. London: Academic Press.Google Scholar
Isseroff, H., Ertel, J. C. & Levy, M. G. (1976). Absorption of amino acids by Schistosoma mansoni. Comparative Biochemistry and Physiology 54B, 125–35.Google Scholar
Johnson, R. G., Carty, S. E. & Scarpa, A. (1985). Coupling of H+ gradients to catecholamine transport in chromaffin granules. In Membrane Transport Driven by Ion Gradients, (ed. Seminza, G. and Kinne, R.), pp. 254267. New York: New York Academy of Sciences.Google Scholar
Kimmich, G. A., Randles, J., Restrepo, D. & Montrose, M. (1985). The potential dependence of the intestinal Na+ dependent sugar transport. In Membrane Transport Driven by Ion Gradients, (ed. Seminza, G. and Kinne, R.), pp. 6376. New York: New York Academy of Sciences.Google Scholar
Kovacevic, Z. & McGivan, J. D. (1983). Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiological Reviews 63, 547605.CrossRefGoogle ScholarPubMed
Kvamme, E., Torgner, I. & Svenneby, G. (1985). Glutaminase from mammalian tissues. In Glutamate, Glutamine, Glutathione, and Related Compounds (ed. Meister, A.). Methods in Enzymology 113, 241–57.CrossRefGoogle Scholar
Levy, M. G. & Read, C. (1975). Purine and pyrimidine transport in Schistosoma mansoni. Journal of Parasitology 61, 627–32.CrossRefGoogle ScholarPubMed
Pappas, P. & Read, C. (1975). Parasitological review. Membrane transport in helminth parasites: a review. Experimental Parasitology 37, 469530.Google Scholar
Pax, R. A., Bricker, C. S., Thompson, D.P., Semeyn, D. R. & Bennett, J. L. (1983). Neurophysiology of adult male Schistosoma mansoni. Pharmacological Therapeutics 22, 117–25.Google Scholar
Podesta, R. & Dean, L. (1982). Uptake of galactose by the epithelial syncytium of Schistosoma mansoni. Molecular Biochemistry and Parasitology 5, 353–60.CrossRefGoogle ScholarPubMed
Schnell, S. (1985). Amino acid metabolism in the freshwater pulmonate Biomphalaria glabrata infected with the trematode Schistosoma mansoni. Comparative Biochemistry and Physiology 81B, 1001–8.Google Scholar
Senft, A. W. (1966). Studies in arginine metabolism by schistosomes. I. Arginine uptake and lysis by S. mansoni. Comparative Biochemistry and Physiology 18, 209–16.CrossRefGoogle Scholar
Senft, A. W. (1972). Purine metablism in Schistosoma mansoni. International Journal for Parasitology 2, 249–60.CrossRefGoogle Scholar
Sies, H. (1984). Hepatic glutamine andammonia metabolism nitrogen redox balance and the intracellular glutamine cycle. In Glutamine Metabolism in Mammalian Tissues (ed. Haussinger, D. and Sies, H.), pp. 7898. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Smyth, J. D. & Halton, D. W. (1983). The adult-general metabolism. In The Physiology of Trematodes, 2nd edn. Cambridge: Cambridge University Press.Google Scholar