Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T17:41:36.547Z Has data issue: false hasContentIssue false

Leishmania donovani: proteasome-mediated down-regulation of methionine adenosyltransferase

Published online by Cambridge University Press:  03 August 2011

YOLANDA PÉREZ-PERTEJO*
Affiliation:
Departamento de Farmacología y Toxicología (INTOXCAL), Universidad de León, Campus de Vegazana s/n; 24071 León, Spain
RAQUEL ÁLVAREZ-VELILLA
Affiliation:
Departamento de Farmacología y Toxicología (INTOXCAL), Universidad de León, Campus de Vegazana s/n; 24071 León, Spain
CARLOS GARCÍA ESTRADA
Affiliation:
Departamento de Farmacología y Toxicología (INTOXCAL), Universidad de León, Campus de Vegazana s/n; 24071 León, Spain
RAFAEL BALAÑA-FOUCE
Affiliation:
Departamento de Farmacología y Toxicología (INTOXCAL), Universidad de León, Campus de Vegazana s/n; 24071 León, Spain
ROSA M. REGUERA
Affiliation:
Departamento de Farmacología y Toxicología (INTOXCAL), Universidad de León, Campus de Vegazana s/n; 24071 León, Spain
*
*Corresponding author: Departamento de Ciencias Biomédicas (INTOXCAL), Universidad de León, Campus de Vegazana s/n; 24071 León, Spain. Tel: +34 987 291257. Fax: +34 987 291252. E-mail: [email protected]

Summary

Methionine adenosyltransferase (MAT) is an important enzyme for metabolic processes, to the extent that its product, S-adenosylmethionine (AdoMet), plays a key role in trans-methylation, trans-sulphuration and polyamine synthesis. Previous studies have shown that a MAT-overexpressing strain of Leishmania donovani controls AdoMet production, keeping the intracellular AdoMet concentration at levels that are compatible with cell survival. This unexpected result, together with the fact that MAT activity and abundance changed with time in culture, suggests that different regulatory mechanisms acting beyond the post-transcriptional level are controlling this protein. In order to gain an insight into these mechanisms, several experiments were carried out to explain the MAT abundance during promastigote cell growth. Determination of MAT turnover in cycloheximide (CHX)-treated cultures resulted in a surprising 5-fold increase in MAT turnover compared to CHX-untreated cultures. This increase agrees with a stabilization of the MAT protein, whose integrity was maintained during culture. The presence of proteasome inhibitors, namely MG-132, MG-115, epoxomycin and lactacystin in the culture medium prevented MAT degradation in both MAT-overexpressing and ‘mock-transfected’ leishmanial strains. The role of the ubiquitin (Ub) pathway in MAT down-regulation was supported using immunoprecipitation experiments. Immunoprecipitated MAT cross-reacted with anti-Ub antibodies, which provides evidence of a proteasome-mediated down-regulation of the leishmanial MAT abundance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bacchi, C. J., Garofalo, J., Ciminelli, M., Rattendi, D., Goldberg, B., McCann, P. P. and Yarlett, N. (1993). Resistance to DL-alpha-difluoromethylornithine by clinical isolates of Trypanosoma brucei rhodesiense. Role of S-adenosylmethionine. Biochemical Pharmacology 46, 471481.Google Scholar
Berriman, M., Ghedin, E., Hertz-Fowler, C., Blandin, G., Renauld, H., Bartholomeu, D. C., Lennard, N. J., Caler, E., Hamlin, N. E., Haas, B., Böhme, U., Hannick, L., Aslett, M. A., Shallom, J., Marcello, L., Hou, L., Wickstead, B., Alsmark, U. C., Arrowsmith, C., Atkin, R. J., Barron, A. J., Bringaud, F., Brooks, K., Carrington, M., Cherevach, I., Chillingworth, T. J., Churcher, C., Clark, L. N., Corton, C. H., Cronin, A., Davies, R. M., Doggett, J., Djikeng, A., Feldblyum, T., Field, M. C., Fraser, A., Goodhead, I., Hance, Z., Harper, D., Harris, B. R., Hauser, H., Hostetler, J., Ivens, A., Jagels, K., Johnson, D., Johnson, J., Jones, K., Kerhornou, A. X., Koo, H., Larke, N., Landfear, S., Larkin, C., Leech, V., Line, A., Lord, A., Macleod, A., Mooney, P. J., Moule, S., Martin, D. M., Morgan, G. W., Mungall, K., Norbertczak, H., Ormond, D., Pai, G., Peacock, C. S., Peterson, J., Quali, M. A., Rabbinowitsch, E., Rajandream, M. A., Reitter, C., Salzberg, S. L., Sanders, M., Schobel, S., Sharp, S., Simmonds, M., Simpson, A. J., Tallon, L., Turner, C. M., Tait, A., Tivey, A. R., Van Aken, S., Walker, D., Wanless, D., Wang, S., White, B., White, O., Whitehead, S., Woodward, J., Wortman, J., Adams, M. D., Embley, T. M., Gull, K., Ullu, E., Barry, J. D., Fairlamb, A. H., Opperdoes, F., Barrell, B. G., Donelson, J. E., Hall, N., Fraser, C. M., Melville, S. E. and El-Sayed, N. M. (2005). The genome of the African trypanosome Trypanosoma brucei. Science 309, 416422.CrossRefGoogle ScholarPubMed
Bouzat, J. L., McNeil, L. K., Robertson, H. M., Solter, L. F., Nixon, J. E., Beever, J. E., Gaskins, H. R., Olsen, G., Subramaniam, S., Sogin, M. L. and Lewin, H. A. (2000). Phylogenomic analysis of the alpha proteasome gene family from early-diverging eukaryotes. Journal of Molecular Evolution 51, 532543.Google ScholarPubMed
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.Google Scholar
Carlton, J. M., Angiuoli, S. V., Suh, B. B., Kooij, T. W., Pertea, M., Silva, J. C., Ermolaeva, M. D., Allen, J. E., Selengut, J. D., Koo, H. L., Peterson, J. D., Pop, M., Kosack, D. S., Shumway, M. F., Bidwell, S. L., Shallom, S. J., van Aken, S. E., Riedmuller, S. B., Feldblyum, T. V., Cho, J. K., Quackenbush, J., Sedegah, M., Shoaibi, A., Cummings, L. M., Florens, L., Yates, J. R., Raine, J. D., Sinden, R. E., Harris, M. A., Cunningham, D. A., Preiser, P. R., Bergman, L. W., Vaidya, A. B., van Lin, L. H., Janse, C. J., Waters, A. P., Smith, H. O., White, O. R., Salzberg, S. L., Venter, J. C., Fraser, C. M., Hoffman, S. L., Gardner, M. J. and Carucci, D. J. (2002). Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature, London 419, 512519.CrossRefGoogle ScholarPubMed
Cuervo, P., de Jesús, J. B., Junqueira, M., Mendonca-Lima, L., Gonzalez, L. J., Betancourt, L., Grimaldi, G. Jr, Domoni, G. B., Fernández, O. and Cupolillo, E. (2007). Proteome analysis of Leishmania (Viannia) braziliensis by two-dimensional gel electrophoresis and mass spectrometry. Molecular and Biochemical Parasitology 154, 621.Google Scholar
de Diego, J. L., Katz, J. M., Marshall, P., Gutierrez, B., Manning, J. E., Nussenzweig, V. and Gonzalez, J. (2001). The ubiquitin-proteasome pathway plays an essential role in proteolysis during Trypanosoma cruzi remodeling. Biochemistry 40, 10531062.CrossRefGoogle ScholarPubMed
Drummelsmith, J., Brochu, V., Girard, I., Messier, N. and Ouellette, M. (2003). Proteome mapping of the protozoan parasite Leishmania and application to the study of drug targets and resistance mechanisms. Molecular and Cellular Proteomics : MCP 2, 146155.CrossRefGoogle Scholar
Drummelsmith, J., Girard, I., Trudel, N. and Ouellette, M. (2004). Differential protein expression analysis of Leishmania major reveals novel roles for methionine adenosyltransferase and S-adenosylmethionine in methotrexate resistance. The Journal of Biological Chemistry 279, 3327333280.Google Scholar
Dubessay, P., Blaineau, C., Bastien, P., Tasse, L., Van Dijk, J., Crobu, L. and Pages, M. (2006). Cell cycle-dependent expression regulation by the proteasome pathway and characterization of the nuclear targeting signal of a Leishmania major Kin-13 kinesin. Molecular Microbiology 59, 11621174.CrossRefGoogle ScholarPubMed
El-Sayed, N. M., Myler, P. J., Bartholomeu, D. C., Nilsson, D., Aggarwal, G., Tran, A. N., Ghedin, E., Worthey, E. A., Delcher, A. L., Blandin, G., Westenberger, S. J., Caler, E., Cerqueira, G. C., Branche, C., Haas, B., Anupama, A., Arner, E., Aslund, L., Attipoe, P., Bontempi, E., Bringaud, F., Burton, P., Cadag, E., Campbell, D. A., Carrington, M., Crabtree, J., Darban, H., da Silveira, J. F., de Jong, P., Edwards, K., Englund, P. T., Fazelina, G., Feldblyum, T., Ferella, M., Frasch, A. C., Gull, K., Horn, D., Hou, L., Huang, Y., Kindlund, E., Klingbeil, M., Kluge, S., Koo, H., Lacerda, D., Levin, M. J., Lorenzi, H., Louie, T., Machado, C. R., McCulloch, R., McKenna, A., Mizuno, Y., Mottram, J. C., Nelson, S., Ochaya, S., Osoegawa, K., Pai, G., Parsons, M., Pentony, M., Pettersson, U., Pop, M., Ramirez, J. L., Rinta, J., Robertson, L., Salzberg, S. L., Sanchez, D. O., Seyler, A., Sharma, R., Shetty, J., Simpson, A. J., Sisk, E., Tammi, M. T., Tarleton, R., Teixeira, S., Van Aken, S., Vogt, C., Ward, P. N., Wickstead, B., Wortman, J., White, O., Fraser, C. M., Stuart, K. D. and Andersson, B. (2005). The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309, 409415.CrossRefGoogle ScholarPubMed
Emmerlich, V., Santarius, U., Bakker-Grunwald, T. and Scholze, H. (1999). Isolation and subunit composition of the 20S proteasome of Giardia lamblia. Molecular and Biochemical Parasitology 100, 131134.Google Scholar
Fontecave, M., Atta, M. and Mulliez, E. (2004). S-adenosylmethionine: nothing goes to waste. Trends in Biochemical Sciences 29, 243249.CrossRefGoogle ScholarPubMed
Garcia-Estrada, C., Perez-Pertejo, Y., Ordonez, D., Balana-Fouce, R. and Reguera, R. M. (2007). Analysis of genetic elements regulating the methionine adenosyltransferase gene in Leishmania infantum. Gene 389, 163173.CrossRefGoogle ScholarPubMed
Garcia-Estrada, C., Reguera, R. M., Villa, H., Requena, J. M., Muller, S., Perez-Pertejo, Y., Balana-Fouce, R. and Ordonez, D. (2003). Identification of a gene in Leishmania infantum encoding a protein that contains a SP-RING/MIZ zinc finger domain. Biochimica et Biophysica Acta 1629, 4452.CrossRefGoogle ScholarPubMed
Gil, B., Pajares, M. A., Mato, J. M. and Alvarez, L. (1997). Glucocorticoid regulation of hepatic S-adenosylmethionine synthetase gene expression. Endocrinology 138, 12511258.Google Scholar
Gonzalez, J., Ramalho-Pinto, F. J., Frevert, U., Ghiso, J., Tomlinson, S., Scharfstein, J., Corey, E. J. and Nussenzweig, V. (1996). Proteasome activity is required for the stage-specific transformation of a protozoan parasite. The Journal of Experimental Medicine 184, 19091918.CrossRefGoogle ScholarPubMed
Hellberg, A., Sommer, A. and Bruchhaus, I. (1999). Primary sequence of a putative non-ATPase subunit of the 26S proteasome from Entamoeba histolytica is similar to the human and yeast S2 subunit. Parasitology Research 85, 417420.Google Scholar
Hicke, L., Schubert, H. L. and Hill, C. P. (2005). Ubiquitin-binding domains. Nature Reviews. Molecular Cell Biology 6, 610621.CrossRefGoogle ScholarPubMed
Hunter, T. (2007). The age of crosstalk: phosphorylation, ubiquitination, and beyond. Molecular Cell 28, 730738.Google Scholar
Ivens, A. C., Peacock, C. S., Worthey, E. A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M. A., Adlem, E., Aert, R., Anupama, A., Apostolou, Z., Attipoe, P., Bason, N., Bauser, C., Beck, A., Beverley, S. M., Bianchettin, G., Borzym, K., Bothe, G., Bruschi, C. V., Collins, M., Cadag, E., Ciarloni, L., Clayton, C., Coulson, R. M., Cronin, A., Cruz, A. K., Davies, R. M., De Gaudenzi, J., Dobson, D. E., Duesterhoeft, A., Fazelina, G., Fosker, N., Frasch, A. C., Fraser, A., Fuchs, M., Gabel, C., Goble, A., Goffeau, A., Harris, D., Hertz-Fowler, C., Hilbert, H., Horn, D., Huang, Y., Klages, S., Knights, A., Kube, M., Larke, N., Litvin, L., Lord, A., Louie, T., Marra, M., Masuy, D., Matthews, K., Michaeli, S., Mottram, J. C., Muller-Auer, S., Munden, H., Nelson, S., Norbertczak, H., Oliver, K., O'neil, S., Pentony, M., Pohl, T. M., Price, C., Purnelle, B., Quail, M. A., Rabbinowitsch, E., Reinhardt, R., Rieger, M., Rinta, J., Robben, J., Robertson, L., Ruiz, J. C., Rutter, S., Saunders, D., Schafer, M., Schein, J., Schwartz, D. C., Seeger, K., Seyler, A., Sharp, S., Shin, H., Sivam, D., Squares, R., Squares, S., Tosato, V., Vogt, C., Volckaert, G., Wambutt, R., Warren, T., Wedler, H., Woodward, J., Zhou, S., Zimmermann, W., Smith, D. F., Blackwell, J. M., Stuart, K. D., Barrell, B. and Myler, P. J. (2005). The genome of the kinetoplastid parasite, Leishmania major. Science 309, 436442.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.CrossRefGoogle ScholarPubMed
Li, G. D., Li, J. L., Mugthin, M. and Ward, S. A. (2000). Molecular cloning of a gene encoding a 20S proteasome beta subunit from Plasmodium falciparum. International Journal for Parasitology 30, 729733.CrossRefGoogle ScholarPubMed
Mato, J. M., Alvarez, L., Ortiz, P. and Pajares, M. A. (1997). S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacology and Therapeutics 73, 265280.CrossRefGoogle ScholarPubMed
Mato, J. M., Corrales, F. J., Lu, S. C. and Avila, M. A. (2002). S-Adenosylmethionine: a control switch that regulates liver function. The FASEB Journal 16, 1526.CrossRefGoogle ScholarPubMed
Nasizadeh, S., Jeppsson, A. and Persson, L. (2003). Proteasomal degradation of a trypanosomal ornithine decarboxylase. Cellular Physiology and Biochemistry 13, 321328.Google Scholar
Pajares, M. A., Duran, C., Corrales, F. and Mato, J. M. (1994). Protein kinase C phosphorylation of rat liver S-adenosylmethionine synthetase: dissociation and production of an active monomer. The Biochemical Journal 303, 949955.CrossRefGoogle ScholarPubMed
Paugam, A., Creuzet, C., Dupouy-Camet, J. and Roisin, M. P. (2001). Evidence for the existence of a proteasome in Toxoplasma gondii: intracellular localization and specific peptidase activities. Parasite 8, 267273.CrossRefGoogle ScholarPubMed
Pegg, A. E. (2006). Regulation of ornithine decarboxylase. The Journal of Biological Chemistry 281, 1452914532.Google Scholar
Perez-Pertejo, Y., Reguera, R. M., Ordonez, D. and Balana-Fouce, R. (2006). Characterization of a methionine adenosyltransferase over-expressing strain in the trypanosomatid Leishmania donovani. Biochimica et Biophysica Acta 1760, 1019.Google Scholar
Persson, L., Jeppsson, A. and Nasizadeh, S. (2003). Turnover of trypanosomal ornithine decarboxylases. Biochemical Society Transactions 31, 411414.CrossRefGoogle ScholarPubMed
Reguera, R. M., Balana-Fouce, R., Perez-Pertejo, Y., Fernandez, F. J., Garcia-Estrada, C., Cubria, J. C., Ordonez, C. and Ordonez, D. (2002). Cloning expression and characterization of methionine adenosyltransferase in Leishmania infantum promastigotes. The Journal of Biological Chemistry 277, 31583167.CrossRefGoogle ScholarPubMed
Reguera, R. M., Redondo, C. M., Perez-Pertejo, Y. and Balana-Fouce, R. (2007). S-Adenosylmethionine in protozoan parasites: functions, synthesis and regulation. Molecular and Biochemical Parasitology 152, 110.CrossRefGoogle ScholarPubMed
Robertson, C. D. (1999). The Leishmania mexicana proteasome. Molecular and Biochemical Parasitology 103, 4960.Google Scholar
Silva-Jardim, I., Horta, M. F. and Ramalho-Pinto, F. J. (2004). The Leishmania chagasi proteasome: role in promastigotes growth and amastigotes survival within murine macrophages. Acta Tropica 91, 121130.CrossRefGoogle ScholarPubMed
To, W. Y. and Wang, C. C. (1997). Identification and characterization of an activated 20S proteasome in Trypanosoma brucei. FEBS Letters 404, 253262.Google Scholar
Tryoen-Toth, P., Richert, S., Sohm, B., Mine, M., Marsac, C., Van Dorsselaer, A., Leize, E. and Florentz, C. (2003). Proteomic consequences of a human mitochondrial tRNA mutation beyond the frame of mitochondrial translation. The Journal of Biological Chemistry 278, 2431424323.CrossRefGoogle ScholarPubMed
Van Hellemond, J. J. and Mottram, J. C. (2000). The CYC3 gene of trypanosoma brucei encodes a cyclin with a short half-life. Molecular and Biochemical Parasitology 111, 275282.Google Scholar
Voges, D., Zwickl, P. and Baumeister, W. (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annual Review of Biochemistry 68, 10151068.Google Scholar
Wang, S. C. and Frey, P. A. (2007). S-adenosylmethionine as an oxidant: the radical SAM superfamily. Trends in Biochemical Sciences 32, 101110.CrossRefGoogle ScholarPubMed
Yao, Y., Toth, C. R., Huang, L., Wong, M. L., Dias, P., Burlingame, A. L., Coffino, P. and Wang, C. C. (1999). Alpha5 subunit in Trypanosoma brucei proteasome can self-assemble to form a cylinder of four stacked heptamer rings. The Biochemical Journal 344 Pt 2, 349358.CrossRefGoogle Scholar
Yerlikaya, A. and Stanley, B. A. (2004). S-adenosylmethionine decarboxylase degradation by the 26 S proteasome is accelerated by substrate-mediated transamination. The Journal of Biological Chemistry 279, 1246912478.Google Scholar