Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T04:44:00.808Z Has data issue: false hasContentIssue false

The larvicidal activity of cyclosporin A against Schistosoma mansoni in mice

Published online by Cambridge University Press:  06 April 2009

G. H. Munro
Affiliation:
Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA
L. R. Brannan
Affiliation:
Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen AB9 2TN
L. H. Chappell
Affiliation:
Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen AB9 2TN
A. W. Thomson
Affiliation:
Department of Pathology, University Medical School, Forester Hill, Aberdeen AB9 2ZD
D. J. McLaren
Affiliation:
Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA

Summary

Treatment of BALB/c or MF1 mice with cyclosporin A (CsA) around the time of infection with Schistosoma mansoni conferred almost complete protection. The migration kinetics of L-[75Se]selenomethionine-labelled infective cercariae were investigated by compressed tissue autoradiography. Similar levels of skin penetration were achieved by cercariae in control and drug-treated individuals. CsA arrested 87–94% of the worms in the skin and ultimately all of these died in this site. Few worms (7–14%) migrated from the skin to the lungs and none completed migration to the liver. Nevertheless, the autoradiograms revealed a limited degree of lateral cutaneous migration by the worms present in the skins of CsA-treated mice. Results of perfusion recovery experiments carried out during the course of infection reinforced the tracking data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balint, G. A. & Varo, V. (1988). The role of intracellular calcium in the cytoprotective effect of prostacyclin. Kitasato Archives of Experimental Medicine 61, 6972.Google ScholarPubMed
Bout, D., Deslee, D. & Capron, A. (1984). Protection against schistosomiasis produced by cyclosporin A. American Journal of Tropical Medicine and Hygiene 78, 670–1.CrossRefGoogle Scholar
Bout, D., Deslee, D. & Capron, A. (1986). Antischistosomal effect of cyclosporin A: cure and prevention of mouse and rat schistosomiasis mansoni. Infection and Immunity 52, 823–7.CrossRefGoogle ScholarPubMed
Bueding, E., Hawkins, J. & Cha, Y. N. (1981). Antischistosomal effects of cyclosporin A. Agents and Actions 11, 380–3.CrossRefGoogle ScholarPubMed
Cesari, I. M., Rodriguez, M. & McLaren, D. J. (1981). Proteolytic enzymes in adult male and female worms of Schistosoma mansoni. Acta Cientificas Venezolana 32, 324–9.Google ScholarPubMed
Chappell, C. L. & Dresden, M. H. (1986). Schistosoma mansoni: proteinase activity of ‘hemoglobinase’ from the digestive tract of adult worms. Experimental Parasitology 61, 160–7.CrossRefGoogle ScholarPubMed
Chappell, L. H., Thomson, A. W., Barker, G. C. & Smith, S. W. G. (1987). Dosage, timing and route of administration of cyclosporin A and non-immunosuppressive derivatives of dihydrocyclosporin A and cyclosporin C against Schistosoma mansoni in vivo and in vitro. Antimicrobial Agents and Chemotherapy 31, 1567–71.CrossRefGoogle Scholar
Coulson, P. S. & Wilson, R. A. (1988). Examination of the mechanisms of pulmonary phase resistance to Schistosoma mansoni in vaccinated mice. American Journal of Tropical Medicine and Hygiene 38, 529–39.CrossRefGoogle ScholarPubMed
Dean, D. A., Mangold, B. L., Georgi, J. R. & Jacobson, R. H. (1984). Comparison of Schistosoma mansoni migration patterns in normal and irradiated cercaria-immunized mice by means of autoradiographic analysis. Evidence that worm elimination occurs after the skin phase in immunized mice. American Journal of Tropical Medicine and Hygiene 33, 8096.CrossRefGoogle ScholarPubMed
Fischer, G. & Bang, H. (1985). The refolding of urea-denatured ribonuclease A is catalysed by peptidylprolyl cis-trans isomerase. Biochimica et Biophysica Acta 828, 3942.CrossRefGoogle Scholar
Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T. & Schmid, F. X. (1989). Cyclophilin and peptidylprolyl cis-trans isomerase are probably identical proteins. Nature, London 337, 476–8.CrossRefGoogle ScholarPubMed
Flisser, A., Elsaghier, A. A. F. & McLaren, D. J. (1989). Effect of praziquantel on the migration and survival of developmental stages of Schistosoma mansoni in mice. International Journal for Parasitology 19, 665–72.CrossRefGoogle ScholarPubMed
Freedman, R. B. (1989). Convergence of drug action. Nature, London 341, 692.CrossRefGoogle ScholarPubMed
Grant, C. T. & Senft, A. W. (1971). Schistosome proteolytic enzyme. Comparative Biochemistry and Physiology 38B, 663–78.Google ScholarPubMed
Hess, A. D., Esa, A. H. & Colombani, P. M. (1988). Mechanisms of action of cyclosporine: effect on cells of the immune system and on subcellular events in T-cell activation. Transplantation Proceedings 20, Suppl. 2, 2940.Google ScholarPubMed
Kamiya, H. & McLaren, D. J. (1987). Schistosoma mansoni: migration potential of normal and radiation attenuated parasites in naive guinea-pigs. Experimental Parasitology 63, 98107.CrossRefGoogle ScholarPubMed
Kamiya, H., Smithers, S. R. & McLaren, D. J. (1987). Schistosoma mansoni: autoradiographic tracking studies of isotopically-labelled challenge parasites in naive and vaccinated CBA/Ca mice. Parasite Immunology 9, 515–29.CrossRefGoogle ScholarPubMed
Kasschau, M. R. & Dresden, M. H. (1986). Schistosoma mansoni: characterization of hemolytic activity from adult worms. Experimental Parasitology 61, 201–9.CrossRefGoogle ScholarPubMed
Koletsky, A. J., Harding, M. W. & Handschumacher, R. E. (1986). Cyclophilin: distribution and variant properties in normal and neoplastic tissues. Journal of Immunology 137, 1054–9.CrossRefGoogle ScholarPubMed
McLaren, D. J. (1989). Will the real target of immunity to schistosomiasis please stand up. Parasitology Today 5, 279–82.CrossRefGoogle ScholarPubMed
McLaren, D. J., Peterson, C. G. B. & Venge, P. (1984). Schistosoma mansoni: further studies of the interaction between schistosomula and granulocyte-derived cationic proteins in vitro. Parasitology 88, 491503.CrossRefGoogle ScholarPubMed
McLaren, D. J. & Smithers, S. R. (1988). Serum from CBA/Ca mice vaccinated with irradiated cercariae of Schistosoma mansoni protects naive recipients through the recruitment of cutaneous effector cells. Parasitology 97, 287302.Google ScholarPubMed
Munro, G. H. & McLaren, D. J. (1990 a). Toxicity of cyclosporin A (CsA) against developmental stages of Schistosoma mansoni in mice. Parasitology 100, 2934.CrossRefGoogle ScholarPubMed
Munro, G. H. & McLaren, D. J. (1990 b). Schistosoma mansoni: morphology and ultrastructure of adult worms recovered from cyclosporin A-treated mice. Parasitology 100, 1928.CrossRefGoogle ScholarPubMed
Nilsson, L. A., Linblad, R., Olling, S. & Ouchterlony, O. (1985). The effect of cyclosporin A on the course of murine infection by Schistosoma mansoni. Parasite Immunology 7, 1927.CrossRefGoogle ScholarPubMed
Pons, H. A., Adams, S. & Stadecker, M. J. (1988). Schistosoma mansoni: the basis for the antischistosomal effect of cyclosporine A. Experimental Parasitology 67, 190–8.CrossRefGoogle ScholarPubMed
Rumjanek, F. D. (1987). Biochemistry and physiology. In The Biology of Schistosomes (ed. Rollinson, D. & Simpson, A. J. G.), pp. 163–83. London: Academic Press.Google Scholar
Senft, A. W., Goldberg, M. W. & Byram, J. E. (1981). Hemoglobinolytic activity of serum in mice infected with Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 30, 96101.CrossRefGoogle ScholarPubMed
Smith, S. W. G., Chappell, L. H., Thomson, A. W., Macgowan, A. G. & Simpson, J. G. (1988). Prophylactic and therapeutic effects of ciclosporin A in murine Schistosomiasis mansoni: studies on bisexual and unisexual infections and the hepatic inflammatory response. International Archives of Allergy and Applied Immunology 85, 174–9.CrossRefGoogle ScholarPubMed
Smithers, S. R. & Gammage, K. (1980). Recovery of Schistosoma mansoni from the skin, lungs and hepatic portal system of naive mice and mice previously exposed to S. mansoni: evidence for two phases of attrition in immune mice. Parasitology 80, 289300.CrossRefGoogle Scholar
Smithers, S. R. & Terry, R. J. (1965). The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of adult worms. Parasitology 55, 695700.CrossRefGoogle ScholarPubMed
Takahashi, N., Hayano, T. & Suzuki, M. (1989). Peptidyl-prolyl cis-trans isomerase is the cyclosporin A binding protein cyclophilin. Nature, London 337, 473–5.CrossRefGoogle ScholarPubMed
Thomson, A. W., Smith, S. W. G. & Chappell, L. H. (1986). Cyclosporin A: immune suppressant and antiparasitic agent. Parasitology Today 2, 288–90.CrossRefGoogle ScholarPubMed
Thomson, A. W. & Webster, L. M. (1988). The influence of cyclosporin A on cell-mediated immunity. Clinical and Experimental Immunology 71, 369–76.Google ScholarPubMed
Ward, R. E. M. & McLaren, D. J. (1988). Schistosoma mansoni: evidence that eosinophils and/or macrophages contribute to skin-phase challenge attrition in vaccinated CBA/Ca mice. Parasitology 96, 6384.CrossRefGoogle ScholarPubMed
Wilson, R. A. & Coulson, P. S. (1986). Schistosoma mansoni: dynamics of migration through the vascular system of the mouse. Parasitology 92, 83100.CrossRefGoogle ScholarPubMed
Wilson, R. A., Coulson, P. S. & Dixon, B. (1986). Migration of the schistosomula of Schistosoma mansoni in mice vaccinated with radiation-attenuated cercariae, and normal mice: an attempt to identify the timing and site of parasite death. Parasitology 92, 101–16.CrossRefGoogle ScholarPubMed