Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T17:53:57.290Z Has data issue: false hasContentIssue false

Is the nestedness of metazoan parasite assemblages of marine fishes from the southeastern Pacific coast a pattern associated with the geographical distributional range of the host?

Published online by Cambridge University Press:  06 February 2009

M. T. GONZÁLEZ*
Affiliation:
Instituto de Investigaciones Oceanológicas, Universidad de Antofagasta, Casilla 170-Antofagasta, Chile
M. E. OLIVA
Affiliation:
Instituto de Investigaciones Oceanológicas, Universidad de Antofagasta, Casilla 170-Antofagasta, Chile
*
*Corresponding author: Tel: +56 55 637404. Fax: +56 55 637804. E-mail: [email protected]

Summary

Nested structure is a pattern originally described in island biogeography to characterize how a set of species is distributed among a set of islands. In parasite communities, nestedness has been intensively studied among individual fish from a locality. However, nested patterns among parasite assemblages from different host populations (localities) have scarcely been investigated. We recorded the occurrence of parasites in 9 fish species widely distributed along the southeastern Pacific coast to determine whether the ecto- and endoparasite assemblages of marine fishes show a nested structure associated with host distributional range. Nestedness was tested using Brualdi-Sanderson index of discrepancy (BR); and 5 null models incorporated in a ‘Nestedness’ programme (Ulrich, 2006). The ecto- and endoparasite richness do not show similar patterns of latitudinal gradients among fish hosts, with 33–66% of analysed ectoparasite assemblages, and 25–75% of endoparasite assemblages showing nested structures through the host distributional range. For ectoparasites, species richness gradients and nested structure (when present) might be associated with decreased host densities or could reflect negative environmental conditions in the distributional border of the host species, whereas for endoparasites might be caused by geographical breaks of prey or changes in prey availability (intermediate hosts). The sampled extension of the distributional range of the host species, as well as the lack of specificity of some parasites, could influence the detection of nestedness.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atmar, W. and Patterson, B. D. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96, 373382.CrossRefGoogle ScholarPubMed
Briggs, J. C. (1974). Marine Zoogeography. McGraw-Hill Co., New York, USA.Google Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology in on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Bush, A. O., Fernández, J. C., Esch, G. W. and Seed, J. (2001). Parasitism, the Diversity and Ecology of Animal Parasites. Cambridge University Press, Cambridge, UK.Google Scholar
Escribano, R. and Hidalgo, P. (2001). Circulación inducida por el viento en Bahía de Antofagasta, norte de Chile (23°S). Revista de Biología Marina y Oceanografía 36, 4360.CrossRefGoogle Scholar
Fischer, J. and Lindenmayer, D. B. (2005). Nestedness in fragmented landscapes: a case study on birds, arboreal marsupials and lizards. Journal of Biogeography 32, 17371750.CrossRefGoogle Scholar
González, M. T. and Acuña, E. (1998). Metazoan parasites of Sebastes capensis from northern Chile. Journal of Parasitology 84, 753757.CrossRefGoogle ScholarPubMed
González, M. T. and Poulin, R. (2005). Nested patterns in parasite component communities of a marine fish along its latitudinal range on the Pacific coast of South America. Parasitology 131, 569571.CrossRefGoogle ScholarPubMed
González, M. T. and Oliva, M. E. (2006). Similarity and structure in the ectoparasite communities of rockfish species from the southern Chilean coast. Parasitology 133, 335343.CrossRefGoogle ScholarPubMed
González, M. T., Barrientos, C. and Moreno, C. A. (2006). Biogeographical patterns of endoparasite communities of a marine fish (Sebastes capensis) along its distributional range in Southern Hemisphere. Journal of Biogeography 33, 10861095.CrossRefGoogle Scholar
Gotelli, N. J. and Rohde, K. (2002). Co-ocurrence of ectoparasites of marine fishes: a null model analysis. Ecology Letters 5, 8694.CrossRefGoogle Scholar
Goüy de Bellocq, J., Sarà, M., Casanova, J. C., Feliu, C., and Morand, S. (2003). A comparison of the structure of Apodemus sylvaticus, on islands of the western Mediterranean and continental Europe. Parasitology Research 90, 6470.CrossRefGoogle Scholar
Guégan, J. F., Morand, S. and Poulin, R. (2005). Are there general laws in parasite community ecology? The emergence of spatial parasitology and epidemiology. In Parasitism and Ecosystems (ed. Thomas, F., Renaud, F. and Guégan, J.-F.), pp. 2242. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Hayward, C. J. (1997). Distribution of external parasites indicates boundaries to dispersal of sillaginid fishes in the Indo-West Pacific. Marine Freshwater Research 48, 391400.CrossRefGoogle Scholar
Holt, R. D. (2000). A biogeographical and landscape perspective on within-host infection dynamic. In Proceedings of the 8th International Symposium of Microbial Ecology (ed. Bell, C. R., Brylinsky, M. and Johnson-Green, P.), pp. 583588. Atlantic Canada Society for Microbial Ecology, Halifax, Canada.Google Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S. and Poulin, R. (2005). Nested pattern in flea assemblages across the host's geographic range. Ecography 28, 475484.CrossRefGoogle Scholar
Kuris, A. M., Blaustein, A. R. and Alió, J. J. (1980). Hosts as islands. American Naturalist 116, 570586.CrossRefGoogle Scholar
Lancellotti, D. A. and Vásquez, J. A. (1999). Biogeographical patterns of benthic macro-invertebrates in the Southeastern Pacific littoral. Journal of Biogeography 26, 10011006.CrossRefGoogle Scholar
Lomolino, M. V. (1996). Investigating causality of nestedness of insular communities: selective immigrations or extinctions? Journal of Biogeography 23, 699703.CrossRefGoogle Scholar
Matejusová, I., Morand, S. and Gelnar, M. (2000). Nestedness in assemblages of gyrodactylids (Monogenea: Gyrodactylidae) parasitizing two species of cyprinid-with reference to generalists and specialists. International Journal for Parasitology 30, 11531158.CrossRefGoogle Scholar
Morand, S. and Poulin, R. (1998). Density, body mass and parasite species richness of terrestrial mammals. Evolutionary Ecology 12, 717727.CrossRefGoogle Scholar
Morand, S., Rohde, K. and Hayward, C. (2002). Order in ectoparasite communities of marine fish is explained by epidemiological processes. Parasitology 124, S57S63.CrossRefGoogle ScholarPubMed
Moore, J. E. and Swihart, R. K. (2007). Toward ecologically explicit null models of nestedness. Oecologia 152, 763777.CrossRefGoogle ScholarPubMed
Ojeda, P., Labra, F. and Muñoz, A. (2000). Patrones biogeográficos de los peces litorales de Chile. Revista Chilena de Historia Natural 73, 625641.Google Scholar
Patterson, B. D. and Atmar, W. (1986). Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnaean Society 28, 6582.CrossRefGoogle Scholar
Pequeño, G. (1989). Peces de Chile. Lista sistemática revisada y comentada. Revista de Biología Marina (Chile) 24, 1132.Google Scholar
Poulin, R. (2004). Parasites and the neutral theory of biodiversity. Ecography 27, 119123.CrossRefGoogle Scholar
Poulin, R. (2007 a). Are there general laws in parasite ecology? Parasitology 134, 763776.CrossRefGoogle ScholarPubMed
Poulin, R. (2007 b). Evolutionary Ecology of Parasites. 2nd Edn.Princeton University Press, Princeton, NJ, USA.CrossRefGoogle Scholar
Rohde, K. (2005). Zoogeography. In Marine Parasitology (ed. Rohde, K.), pp. 347351. CABI Publishing, Oxford, UK.CrossRefGoogle Scholar
Rohde, K., Worthen, W. B., Heap, M., Hugueny, B. and Guégan, J. F. (1998). Nestedness in assemblages of metazoan ecto-and endoparasites of marine fish. International Journal for Parasitology 28, 543549.CrossRefGoogle ScholarPubMed
Sagarin, R. D. and Gaines, S. D. (2002). The “abundant centre” distribution: to what extent is it a biogeographical rule? Ecology Letters 5, 137147.CrossRefGoogle Scholar
Silva, N. and Calvete, C. (2002). Características oceanográficas, físicas y químicas, de canales australes chilenos entre el golfo de Penas y el Estrecho de Magallanes (Crucero Cimar Fiordo 2). Ciencia y Tecnología del Mar (Valpo.) 25, 2388.Google Scholar
Timi, J. and Poulin, R. (2008). Different methods, different results: temporal trends in the study of nested subset patterns in parasite communities. Parasitology 135, 131138.CrossRefGoogle Scholar
Ulrich, W. (2006). Nestedness- a FORTRAN program for calculating ecological matrix temperatures. http://www.uni.torun.pl/~ulrichwGoogle Scholar
Ulrich, W. and Gotelli, N. J. (2007 a). Null model analysis of species nestedness patterns. Ecology 88, 18241831.CrossRefGoogle ScholarPubMed
Ulrich, W. and Gotelli, N. J. (2007 b). Disentangling community patterns of nestedness and species co-occurrence. Oikos 116, 20532061.CrossRefGoogle Scholar
Wright, D. H., Patterson, B. D., Mikkelson, G. M., Cutler, A. and Atmar, W. (1998). A comparative analysis of nested subset patterns of species composition. Oecologia 113, 120.CrossRefGoogle Scholar
Zar, J. (1999). Biostatistical Analysis. Prentice-Hall Inc., NJ, USA.Google Scholar