Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T14:39:59.416Z Has data issue: false hasContentIssue false

Intestinal parasites of the Arctic fox in relation to the abundance and distribution of intermediate hosts

Published online by Cambridge University Press:  02 September 2009

A. STIEN*
Affiliation:
Norwegian Institute of Nature Research (NINA), The Polar Environmental Centre, N-9296, Tromsø, Norway
L. VOUTILAINEN
Affiliation:
Vantaa Research Unit, Finnish Forest Research Institute, POB 18, FI-01301 Vantaa, Finland
V. HAUKISALMI
Affiliation:
Vantaa Research Unit, Finnish Forest Research Institute, POB 18, FI-01301 Vantaa, Finland
E. FUGLEI
Affiliation:
The Polar Environmental Centre, Norwegian Polar Institute, N-9296 Tromsø, Norway
T. MØRK
Affiliation:
National Veterinary Institute, N-9292, Tromsø, Norway
N. G. YOCCOZ
Affiliation:
Norwegian Institute of Nature Research (NINA), The Polar Environmental Centre, N-9296, Tromsø, Norway Department of Biology, University of Tromsø, N-9037, Tromsø, Norway
R. A. IMS
Affiliation:
Norwegian Institute of Nature Research (NINA), The Polar Environmental Centre, N-9296, Tromsø, Norway Department of Biology, University of Tromsø, N-9037, Tromsø, Norway
H. HENTTONEN
Affiliation:
Vantaa Research Unit, Finnish Forest Research Institute, POB 18, FI-01301 Vantaa, Finland
*
*Corresponding author: Norwegian Institute of Nature Research, The Polar Environmental Centre, N-9296 Tromsø, Norway. Tel: +47 77 75 04 11. Fax: +47 77 75 04 01. E-mail: [email protected]

Summary

The intestinal parasite community of Arctic foxes (Vulpes lagopus) on the Svalbard archipelago in the High Arctic was investigated in relation to the abundance and distribution of intermediate hosts. Five species of cestodes (Echinococcus multilocularis, Taenia crassiceps, Taenia polyacantha, Taenia krabbei and Diphyllobothrium sp.), ascaridoid nematodes and one unidentified acanthocephalan species were found. The cestodes E. multilocularis, T. crassiceps and T. polyacantha all showed a decreasing prevalence in the fox population with increasing distance from their spatially restricted intermediate host population of sibling voles (Microtus levis). In addition, the prevalence of E. multilocularis in a sample from the vole population was directly related to the local vole abundance. The cestode T. krabbei uses reindeer as intermediate host, and its prevalence in female foxes was positively related to the density of reindeer (Rangifer tarandus platyrhyncus). Finally, the prevalence of the ascaridoid nematodes also decreased with increasing distance from the vole population, a finding that is consistent with the idea that voles are involved in transmission, most likely as paratenic hosts. The prevalence of the remaining species (Diphyllobothrium sp. and an unidentified acanthocephalan) was very low. We conclude that the distribution and abundance of intermediate host structure the gastrointestinal parasite community of the Arctic fox on the Svalbard archipelago.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agresti, A. and Coull, B. A. (1998). Approximate is better than “Exact” for interval estimation of binomial proportions. The American Statistician 52, 119126.Google Scholar
Anderson, R. M. and Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85, 373398.CrossRefGoogle ScholarPubMed
Anderson, R. M. and May, R. M. (1978). Regulation and stability of host-parasite population interactions. I. Regulatory processes. Journal of Animal Ecology 47, 219247.CrossRefGoogle Scholar
Arneberg, P., Skorping, A., Grenfell, B. T. and Read, A. F. (1998). Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society of London, B 265, 12831289.CrossRefGoogle Scholar
Bye, K. (1985). Cestodes of reindeer (Rangifer tarandus platyrhynchus Vrolik) on the Arctic islands of Svalbard. Canadian Journal of Zoology 63, 28852887.CrossRefGoogle Scholar
Decker, K. H. D., Duszynski, W. and Patrick, M. J. (2001). Biotic and abiotic effects on endoparasites infecting Dipodomys and Perognathus species. Journal of Parasitology 87, 300307.CrossRefGoogle ScholarPubMed
Deter, J., Berthier, K., Chaval, Y., Cosson, J. F., Morand, S. and Charbonnel, N. (2006). Influence of geographical scale on the detection of density dependence in the host-parasite system, Arvicola terrestris and Taenia taeniaeformis. Parasitology 132, 595605.CrossRefGoogle ScholarPubMed
Eckert, J. and Deplazes, P. (2004). Biological, epidemiological and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clinical Microbiology Reviews 17, 107135.CrossRefGoogle ScholarPubMed
Eide, N. E., Jepsen, J. U. and Prestrud, P. (2004). Spatial organization of reproductive Arctic foxes Alopex lagopus: responses to changes in spatial and temporal availability of prey. Journal of Animal Ecology 73, 10561068.CrossRefGoogle Scholar
Frafjord, K. and Prestrud, P. (1992). Home range and movements of arctic foxes Alopex lagopus in Svalbard. Polar Biology 12, 519526.CrossRefGoogle Scholar
Fredga, K., Jaarola, M., Ims, R. A., Steen, H. and Yoccoz, N. G. (1990). The ‘common vole’ in Spitsbergen identified as Microtus epiroticus by chromosome analysis. Polar Research 8, 283290.CrossRefGoogle Scholar
Freeman, R. S. (1962). Studies on the biology of Taenia crassiceps (Zeder, 1800) Rudolphi, 1810 (Cestoda). Canadian Journal of Zoology 40, 969990.CrossRefGoogle Scholar
Fuglei, E., Stien, A., Yoccoz, N. G., Ims, R. A., Eide, N. E., Prestrud, P., Deplazes, P. and Oksanen, A. (2008). Spatial distribution of Echinococcus multilocularis, Svalbard, Norway. Emerging Infectious Diseases 14, 7375.CrossRefGoogle ScholarPubMed
Grue, H. and Jensen, B. (1976). Annual cementum structures in canine teeth in arctic foxes (Alopex lagopus L.) from Greenland and Denmark. Danish Review of Game Biology 10, 112.Google Scholar
Haukisalmi, V. and Henttonen, H. (1990). The impact of climatic factors and host density on the long-term population dynamics of vole helminths. Oecologia 83, 309315.CrossRefGoogle ScholarPubMed
Hegglin, D., Bontadina, F., Contesse, P., Gloor, S. and Deplazes, P. (2007). Plasticity of predation behaviour as a putative driving force for parasite life-cycle dynamics: the case of urban foxes and Echinococcus multilocularis tapeworm. Functional Ecology 21, 552560.CrossRefGoogle Scholar
Henttonen, H., Fuglei, E., Gower, C., Haukisalmi, V., Ims, R. A., Niemimaa, J. and Yoccoz, N. G. (2001). Echinococcus multilocularis on Svalbard: introduction of an intermediate host has enabled the local life cycle. Parasitology 123, 547552.CrossRefGoogle ScholarPubMed
Kapel, C. M. O. and Nansen, P. (1996). Gastrointestinal helminths of arctic foxes (Alopex lagopus) from different bioclimatological regions in Greenland. Journal of Parasitology 82, 1724.CrossRefGoogle ScholarPubMed
Kapel, C. M. O., Torgerson, P. R., Thompson, R. C. A. and Deplazes, P. (2006). Reproductive potential of Echinococcus multilocularis in experimentally infected foxes, dogs, raccoon dogs and cats. International Journal for Parasitology 36, 7986.CrossRefGoogle ScholarPubMed
Lavikainen, A., Haukisalmi, V., Lehtinen, M. J., Henttonen, H., Oksanen, A. and Meri, S. (2008). A phylogeny of members of the family Taeniidae based on mitochondrial cox1 and nad1 gene data. Parasitology 135, 14571467.CrossRefGoogle ScholarPubMed
Le Cessie, S. and Van Houwelingen, J. C. (1991). A goodness of fit test for binary regression models, based on smoothing methods. Biometrics 47, 12671282.CrossRefGoogle Scholar
Loos-Frank, B. (2000). An update of Verster's (1969). ‘Taxonomic revision of the genus Taenia Linnaeus’ (Cestoda) in table format. Systematic Parasitology 45, 155183.CrossRefGoogle Scholar
Prestrud, P. (1992). Denning and home-range characteristics of breeding arctic foxes in Svalbard. Canadian Journal of Zoology 70, 12761283.CrossRefGoogle Scholar
Rausch, R. L. (1956). Studies on the helminth fauna of Alaska. The occurrence of Echinococcus multilocularis Leuckart, 1863, on the mainland of Alaska. American Journal of Tropical Medicine and Hygiene 5, 10861092.CrossRefGoogle ScholarPubMed
Rausch, R. L. (1995). Life cycle patterns and geographic distribution of Echinococcus species. In Echinococcus and Hydatid Disease (ed. Thompson, R. C. A. and Lymberty, A. J.), pp. 89–134. CAB International, Oxon, UK.Google Scholar
Rausch, R. L. and Fay, F. H. (1988). Postoncospheral development and cycle of Taenia polyacantha Leuckart, 1856 (Cestoda: Taeniidae). Second part. Annales de Parasitologie Humaine et Comparée 63, 334348.CrossRefGoogle ScholarPubMed
Rausch, R. L., Fay, F. H. and Williamson, F. S. L. (1983). Helminths of the arctic fox, Alopex lagopus (L.), in Greenland. Canadian Journal of Zoology 61, 18471851.CrossRefGoogle Scholar
Rausch, R. L., Fay, F. H. and Williamson, F. S. L. (1990). The ecology of Echinococcus multilocularis (Cestoda, Taeniidae) on St Lawrence Island, Alaska. II. – Helminth populations in the definitive host. Annales de Parasitologie Humaine et Comparée 65, 131140.CrossRefGoogle Scholar
Reperant, L. A., Hegglin, D., Fischer, C., Kohler, L., Weber, J.-M. and Deplazes, P. (2007). Influence of urbanization on the epidemiology of intestinal helminths of the red fox (Vulpes vulpes) in Geneva, Switzerland. Parasitology Research 101, 605611.CrossRefGoogle ScholarPubMed
Skirnisson, K., Eydal, M., Gunnarsson, E. and Hersteinsson, P. (1993). Parasites of the arctic fox (Alopex lagopus) in Iceland. Journal of Wildlife Diseases 29, 440446.CrossRefGoogle ScholarPubMed
Thompson, R. C. A. (1995). Biology and systematics of Echinococcus. In Echinococcus and Hydatid Disease (ed. Thompson, R. C. A. and Lymbery, A. J.), pp. 150. CAB International, Oxon, UK.Google Scholar
Torgerson, P. R. (2006). Canid immunity to Echinococcus spp.: impact on transmission. Parasite Immunology 28, 295303.CrossRefGoogle ScholarPubMed
Veit, P., Bilger, B., Schad, V., Schäfer, J., Frank, W. and Lucius, R. (1995). Influence of environmental factors on the infectivity of Echinococcus multilocularis eggs. Parasitology 110, 7986.CrossRefGoogle ScholarPubMed
Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Taylor and Francis. CRC Press, London, UK.CrossRefGoogle Scholar
Woolhouse, M. E. J. (1993). A theoretical framework for immune responses and predisposition to helminth infection. Parasite Immunology 15, 583594.CrossRefGoogle ScholarPubMed
Yoccoz, N. G., Steen, H. and Ims, R. A. (1990). Østmarkmus: En ny pattedyrart for Svalbard. Fauna 43, 3642 (in Norwegian).Google Scholar
Yoccoz, N. G. and Ims, R. A. (1999). Demography of small mammals in cold regions: the importance of environmental variability. Ecological Bulletins 47, 137144.Google Scholar