Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T13:08:57.460Z Has data issue: false hasContentIssue false

The interaction of Trypanosoma congolense with endothelial cells

Published online by Cambridge University Press:  06 April 2009

A. Hemphill
Affiliation:
Institute of Parasitology, University of Berne, Laenggass-Strasse 122, 3001 Berne, Switzerland
I. Frame
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
C. A. Ross
Affiliation:
Centre for Tropical Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh EH25 9RG, UK

Extract

Factors which affect adhesion of cultured Trypanosoma congolense bloodstream forms to mammalian feeder cells have been examined. Using an in vitro binding assay, the initial events following interaction of trypanosomes with bovine aorta endothelial (BAE) cells were monitored by both light- and electron microscopy. Metabolic inhibitors and other biochemicals were incubated with either cells or parasites, to test whether any inhibited the process. Our findings suggest that adhesion of the parasites is an active process requiring metabolic energy from the trypanosomes, but not from endothelial cells. We also provide data suggesting that T. congolense bloodstream forms possess a lectin-like domain, localized at distinct sites on their flagellar surface, which interacts with specific carbohydrate receptors, most likely sialic acid residues, on the endothelial cell plasma membrane. We also suggest that the cytoskeletal protein actin is probably involved in this interaction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angelopoulos, E. (1970). Pellicular microtubules in the family Trypanosomatidae. Journal of Protozoology 17, 3951.CrossRefGoogle ScholarPubMed
Banks, K. L. (1978). Binding of Trypanosoma congolense to the walls of the small blood vessels. Journal of Protozoology 25, 241–5.CrossRefGoogle Scholar
Banks, K. L. (1979). In vitro binding of Trypanosoma congolense to erythrocytes. Journal of Protozoology 26, 103–8.CrossRefGoogle ScholarPubMed
Banks, K. L. (1980). Injury induced by Trypanosoma congolense adhesion to cell membranes. Journal of Parasitology 66, 34–7.CrossRefGoogle ScholarPubMed
Benamar, M. F. A., Pays, A., Tebabi, P., Dero, B., Seebeck, T., Steinert, M. & Pays, E. (1988). Structure and transcription of the actin gene in Trypanosoma brucei. Molecular and Cellular Biology 8, 2166–7.Google Scholar
Benhamou, N. (1989). Preparation and application of lectin-gold complexes. In Colloidal Gold: Principles, Methods and Applications, vol. 1 (ed. Hayat, M. A.), pp. 95143. London: Academic Press.CrossRefGoogle Scholar
Boothroyd, J. C. (1985). Antigenic variation in African trypanosomes. Annual Review in Microbiology 39, 475502.CrossRefGoogle ScholarPubMed
Broden, A. (1904). Les infections a trypanosomes au Congo chez l'homme et les animaux. Bulletin de la Société beige d'études coloniales, Bruxelles.Google Scholar
Cooper, J. A. (1987). Effects of cytochalasin and phalloidin on actin. Journal of Cell Biology 105, 1473–8.CrossRefGoogle ScholarPubMed
Frommel, T. O., Seyfang, S. & Balber, A. E. (1988). Trypanosoma brucei ssp.: Cleavage of variant specific and common glycoproteins during the exposure of live cells to trypsin. Experimental Parasitology 66, 213–24.CrossRefGoogle Scholar
Geiger, B. (1989). Cytoskeleton associated cell-contacts. Current Opinion in Cell Biology 1, 103–9.CrossRefGoogle ScholarPubMed
Gray, M. A., Ross, C. A., Taylor, M. A., Tetley, L. & Luckins, A. G. (1985). In vitro cultivation of Trypanosoma congolense: the production of infective forms of metacyclic trypanosomes cultured on bovine aorta endothelial cell monolayers. Acta Tropica 42, 99110.Google ScholarPubMed
Hemphill, A., Lawson, D. & Seebeck, T. (1991 a). The cytoskeletal architecture of Trypanosoma brucei. Journal of Parasitology 77, 603–12.CrossRefGoogle ScholarPubMed
Hemphill, A., Seebeck, T. & Lawson, D. (1991 b). The Trypanosoma brucei cytoskeleton: ultrastructure and localization of microtubule associated and spectrin like proteins using quick-freeze, deep-etch immunogold electron microscopy. Journal of Structural Biology 107, 211–20.CrossRefGoogle ScholarPubMed
Hoffman, S. (1992). Assays of cell adhesion. In Cell–Cell Interactions. A Practical Approach. (ed. Rickwood, D. & Hames, B. D.), pp. 129. Oxford: IRL Press.Google Scholar
Kaliner, G. (1974). Trypanosoma congolense II. Histochemical findings in experimentally infected cattle. Experimental Parasitology 86, 20–6.CrossRefGoogle Scholar
Karlsson, K. A., Milh, M. A., Anggstroem, J., Bergstroem, J., Dezfoolian, H., Lanne, B., Leonardson, I. & Teneberg, S. (1992). Membrane proximity and internal binding in the microbial recognition of host cell glycolipids: a conceptual discussion. In Molecular Recognition in Host–Parasite Interactions. FEMS Symposium No. 61, (ed. Korhonen, T. K., Tapani, H. & Maekelae, P. H.), pp. 115132. New York. Plenum Press.CrossRefGoogle Scholar
Lander, A. D. (1993). Proteoglycans. In Guidebook to Extracellular Matrix and Adhesion Proteins, (ed. Kreis, T. & Vale, R.), pp. 1216. Oxford: Oxford University Press.Google Scholar
Losos, G., Paris, J., Wilson, A. J. & Dar, F. K. (1973). Distribution of Trypanosoma congolense in tissues of cattle. Transactions of the Royal Society of Tropical Medicine and Hygiene 67, 278.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Maina, M., Waitwubi, J. N., Mihak, S. & Zweygarth, E. (1993). Trypanosoma (Nannomonas) congolense: molecular characterization of a new genotype from Tsavo, Kenya. Parasitology 106, 151–62.CrossRefGoogle ScholarPubMed
Molyneux, D. H. & Ashford, R. W. (1983). African animal trypanosomiasis. In The Biology of Trypanosomes and Leishmania Parasites of Man and Domestic Animals. (ed. Taylor, and Francis, ). London: Academic Press.Google Scholar
Monsigny, M., Roche, A. C., Sene, C., Maget-Dana, R. & Delmotte, F. (1980). Sugar-Lectin interactions: How does wheat-germ agglutinin bind sialoglycoconjugates? European Journal of Biochemistry 104, 147–53.CrossRefGoogle ScholarPubMed
Norgard, K. E., Han, H., Powell, L., Kriegler, M., Varki, A. & Varki, N. M. (1993). Enhanced interaction of L-selectin with the high endothelial venule ligand via selectively oxidized sialic acids. Proceedings of the National Academy of Sciences, USA 90, 1068–72.CrossRefGoogle ScholarPubMed
Oebrink, B. (1993). Cell adhesion and cell-cell contact proteins. In Guidebook to Extracellular Matrix and Adhesion Proteins (ed. Kreis, T. & Vale, R.), pp. 109114. Oxford: Oxford University Press.Google Scholar
Reinwald, E. (1985). Role of carbohydrates within variant surface glycoproteins of Trypanosoma congolense. European Journal of Biochemistry 151, 385–91.CrossRefGoogle ScholarPubMed
Schenkman, S., Robbins, E. S. & Nussenzweig, V. (1991 a). Attachment of Trypanosoma cruzi requires parasite energy and invasion can be independent of the target cell cytoskeleton. Infection and Immunity 59, 645–54.CrossRefGoogle ScholarPubMed
Schenkman, S., Diaz, C. & Nussenzweig, V. (1991 b). Attachment of Trypanosoma cruzi trypomastigotes to receptors at restricted cell surface domains. Experimental Parasitology 72, 7686.CrossRefGoogle ScholarPubMed
Seebeck, T., Hemphill, A. & Lawson, D. (1990). The cytoskeleton of trypanosomes. Parasitology Today 6, 4952.CrossRefGoogle Scholar
Smith, M. & Croft, S. L. (1991). Embedding and thin section preparation. In Electron Microscopy in Biology. A Practical Approach (ed. Rickwood, D. & Harris, B. D.), pp. 1737. Oxford: IRL Press.CrossRefGoogle Scholar
Vickerman, K. (1985). The developmental cycles and biology of pathogenic trypanosomes. British Medical Bulletin 41, 105–14.CrossRefGoogle ScholarPubMed
Vickerman, K. (1969). The fine structure of Trypanosoma congolense in its bloodstream phase. Journal of Protozoology 16, 5469.CrossRefGoogle ScholarPubMed
Vickerman, K. & Tetley, L. (1990). Flagellar surfaces of parasitic protozoa and their role in attachment. In Ciliary and Flagellar Membranes, (ed. Bloodgood, J. R.), pp. 267304. New York: Plenum Press.CrossRefGoogle Scholar
Villata, F., Ruiz-Ruano, A., Valentine, A. A. & Lima, M. F. (1993). Purification of a 74 kD glycoprotein from heart myoblasts that inhibits binding and entry of T. cruzi into heart cells. Molecular and Biochemical Parasitology 61, 217–30.CrossRefGoogle Scholar
Woodward, M. P., Young, W. W. & Bloodgood, J. R. (1985). Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. Journal of Immunological Methods 78, 143–53.CrossRefGoogle ScholarPubMed