Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T23:40:10.381Z Has data issue: false hasContentIssue false

Intensity of parasitic mite infection decreases with hibernation duration of the host snail

Published online by Cambridge University Press:  23 March 2012

E. M. HAEUSSLER*
Affiliation:
Department of Environmental Sciences, Section of Conservation Biology, University of Basel, St Johanns-Vorstadt 10, CH-4056 Basel, Switzerland
J. PIZÁ
Affiliation:
Laboratorio de Zoología de Invertebrados 1, Departmento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Argentina
D. SCHMERA
Affiliation:
Department of Environmental Sciences, Section of Conservation Biology, University of Basel, St Johanns-Vorstadt 10, CH-4056 Basel, Switzerland
B. BAUR
Affiliation:
Department of Environmental Sciences, Section of Conservation Biology, University of Basel, St Johanns-Vorstadt 10, CH-4056 Basel, Switzerland
*
*Corresponding author: Department of Environmental Sciences, Section of Conservation Biology, University of Basel, St Johanns-Vorstadt 10, CH-4056 Basel, Switzerland. Tel: +41 61 267 08 46. Fax: +41 61 267 08 32. E-mail: [email protected]

Summary

Temperature can be a limiting factor on parasite development. Riccardoella limacum, a haematophagous mite, lives in the mantle cavity of helicid land snails. The prevalence of infection by R. limacum in populations of the land snail Arianta arbustorum is highly variable (0–78%) in Switzerland. However, parasitic mites do not occur in host populations at altitudes of 1290 m or higher. It has been hypothesized that the host's hibernation period might be too long at high elevations for mites and their eggs to survive. To test this hypothesis, we experimentally infected snails and allowed them to hibernate at 4°C for periods of 4–7 months. Winter survival of host snails was negatively affected by R. limacum. The intensity of mite infection decreased with increasing hibernation duration. Another experiment with shorter recording intervals revealed that mites do not leave the host when it buries in the soil at the beginning of hibernation. The number of mites decreased after 24 days of hibernation, whereas the number of eggs attached to the lung tissue remained constant throughout hibernation. Thus, R. limacum survives the winter in the egg stage in the host. Low temperature at high altitudes may limit the occurrence of R. limacum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agnew, P., Koella, J. C. and Michalakis, Y. (2000). Host life history responses to parasitism. Microbes Infections 2, 891896. doi: 10.1016/S1286-4579(00)00389-0.CrossRefGoogle ScholarPubMed
Ansart, A., Vernon, P. and Daguzan, J. (2001). Photoperiod is the main cue that triggers supercooling ability in the land snail, Helix aspersa (Gastropoda: Helicidae). Cryobiology 42, 266–73. doi: 10.1006/cryo.2001.2332.CrossRefGoogle ScholarPubMed
Ansart, A., Vernon, P. and Daguzan, J. (2002). Elements of cold hardiness in a littoral population of the land snail Helix aspersa (Gastropoda: Pulmonata). Journal of Comparative Physiology B 172, 619625. doi: 10.1007/s00360-002-0290-z.Google Scholar
Baker, R. A. (1970 a). The food of Riccardoella limacum (Schrank) (Acari, Trombidiformes) and its relationship with pulmonate molluscs. Journal of Natural History 4, 521530. doi: 10.1080/00222937000770481.CrossRefGoogle Scholar
Baker, R. A. (1970 b). Studies on the life history of Riccardoella limacum (Schrank) (Acari, Trombidiformes). Journal of Natural History 4, 511519. doi: 10.1080/00222937000770471.CrossRefGoogle Scholar
Banhart, M. C. and McMahon, B. R. (1988). Depression of aerobic metabolism and intracellular pH by hypercapnia in land snails, Otala lactea. Journal of Experimental Biology 138, 289299.CrossRefGoogle Scholar
Baur, A. and Baur, B. (1993 a). Daily movement patterns and dispersal in the land snail Arianta arbustorum. Malacologia 35, 8998.Google Scholar
Baur, A. and Baur, B. (2005). Interpopulation variation in the prevalence and intensity of parasitic mite infection in the land snail Arianta arbustorum. Invertebrate Biology 124, 194201. doi: 10.1111/j.1744-7410.2005.00019.x.CrossRefGoogle Scholar
Baur, B. (1984). Shell size and growth rate differences for alpine populations of Arianta arbustorum (L.) (Pulmonata: Helicidae). Revue suisse de Zoologie 91, 3746.CrossRefGoogle Scholar
Baur, B. (1988). Repeated mating and female fecundity in the simultaneously hermaphroditic land snail Arianta arbustorum. Invertebrate Reproduction and Development 14, 197204.CrossRefGoogle Scholar
Baur, B. (1994). Multiple paternity and individual variation in sperm precedence in the simultaneously hermaphroditic land snail Arianta arbustorum. Behavioral Ecology and Sociobiology 35, 413421. doi: 10.1007/BF00165844.CrossRefGoogle Scholar
Baur, B. and Baur, A. (1993 b). Climatic warming due to thermal radiation from an urban area as possible cause for the local extinction of a land snail. Journal of Applied Ecology 30, 333340. doi: 10.2307/2404635.CrossRefGoogle Scholar
Baur, B. and Raboud, C. (1988). Life-history of the land snail Arianta arbustorum along an altitudinal gradient. Journal of Animal Ecology 57, 7187. doi: 10.2307/4764.CrossRefGoogle Scholar
Callait, M. P. and Gauthier, D. (2000). Parasite adaptations to hibernation in Alpine marmots (Marmota marmota). Life in the Cold: Eleventh International Hibernation Symposium, pp. 139146. Springer, Berlin, Germany.CrossRefGoogle Scholar
Fain, A. and van Goethem, J. L. (1986). Les acariens du genre Riccardoella Berlese 1923 parasites du poumon de mollusques gastéropodes pulmonés terrestres. Acarologia 27, 125140.Google Scholar
Graham, F. J., Runham, N. W. and Ford, J. B. (1996). Long-term effects of Riccardoella limacum living in the lung of Helix aspersa. British Crop Protection Council Symposium Proceedings 66, 359364.Google Scholar
Halvorsen, O. and Skorping, A. (1982). The influence of temperature on growth and development of the nematode Elaphostrongylus rangiferi in the gastropods Arianta arbustorum and Euconulus fulvus. Oikos 38, 285290. doi: 10.2307/3544666.CrossRefGoogle Scholar
Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S. and Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science 296, 21582162. doi: 10.1126/science.1063699.CrossRefGoogle ScholarPubMed
Kerney, M. P. and Cameron, R. A. D. (1979). A Field Guide to the Land Snails of Britain and North-West Europe. Collins, London, UK.Google Scholar
Mitchell, S. E., Rogers, E. S., Little, T. J. and Read, A. F. (2005). Host-parasite and genotype-by-environment interactions: Temperature modifies potential for selection by a sterilizing pathogen. Evolution 59, 7080. doi: 10.1554/04-526.Google ScholarPubMed
Moore, J. (2002). Parasites and the Behavior of Animals. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Morley, N. J. and Lewis, J. W. (2008). The influence of climatic conditions on long-term changes in the helminth fauna of terrestrial molluscs and the implications for transmission in southern England. Journal of Helminthology 82, 325335. doi: 10.1017/S0022149X0802645X.CrossRefGoogle ScholarPubMed
Poulin, R. (2007). Evolutionary Ecology of Parasites, 2nd Edn. Princeton University Press, Princeton, NJ, USA.CrossRefGoogle Scholar
Pulkkinen, K. and Ebert, D. (2004). Host starvation decreases parasite load and mean host size in experimental populations. Ecology 85, 823833. doi: 10.1890/03-0185.CrossRefGoogle Scholar
R Development Core Team (2011). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. URL http://www.R-project.org, Vienna, Austria.Google Scholar
Schjetlein, J. and Skorping, A. (1995). The temperature threshold for development of Elaphostrongylus rangiferi in the intermediate host: an adaptation to winter survival? Parasitology 111, 103110. doi: 10.1017/S0031182000064659.CrossRefGoogle ScholarPubMed
Schmid-Hempel, P. (1998). Parasites in Social Insects. Princeton University Press, Princeton, NJ, USA.Google Scholar
Schuster, R. (1993). Infection patterns in the first intermediate host of Dicrocoelium dendriticum. Veterinary Parasitology 47, 235243. doi: 10.1016/0304-4017(93)90025-I.CrossRefGoogle ScholarPubMed
Schüpbach, H. U. and Baur, B. (2008 a). Parasitic mites influence fitness components of their host, the land snail Arianta arbustorum. Invertebrate Biology 127, 350356. doi:10.1111/j.1744-7410.2008.00138.x.CrossRefGoogle Scholar
Schüpbach, H. U. and Baur, B. (2008 b). Experimental evidence for a new transmission route in a parasitic mite and its mucus-dependent orientation towards the host snail. Parasitology 135, 16791684. doi: 10.1016/j.ijpara.2010.02.012.CrossRefGoogle Scholar
Schüpbach, H. U. and Baur, B. (2010 a). Contact-based transmission models in terrestrial gastropod populations infected with parasitic mites. International Journal for Parasitology 40, 10451050. doi: 10.1016/j.ijpara.2010.02.012.CrossRefGoogle ScholarPubMed
Schüpbach, H. U. and Baur, B. (2010 b). Within- and among-family variation in parasite load and parasite-induced mortality in the land snail Arianta arbustorum, a host of parasitic mites. Journal of Parasitology 96, 830832. doi: 10.1645/GE-2315.1.CrossRefGoogle ScholarPubMed
Seppälä, O., Liljeroos, K., Karvonen, A. and Jokela, J. (2008). Host condition as a constraint for parasite reproduction. Oikos 117, 749753. doi: 10.1111/j.0030-1299.2008.16396.x.CrossRefGoogle Scholar
Sheldon, B. C. and Verhulst, S. (1996). Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology & Evolution 11, 317321. doi: 10.1016/0169-5347(96)10039-2.CrossRefGoogle ScholarPubMed
Solomon, A., Paperna, I. and Markovics, A. (1996). The influence of aestivation in land snails on the larval development of Muellerius cf. capillaris (Metastrongyloidea: Protostrongylidae). International Journal for Parasitology 26, 363367. doi: 10.1016/0020-7519(96)00013-6.CrossRefGoogle ScholarPubMed
Sternberg, M. (2000). Terrestrial gastropods and experimental climate change: a field study in a calcareous grassland. Ecological Research 15, 7381. doi: 10.1046/j.1440-1703.2000.00327.x.CrossRefGoogle Scholar
Tyler, B. M. J. and Jones, P. A. (1974). Hibernation study with Lysiphlebus testaceipes, parasite of the greenbug. Environmental Entomology 3, 412414.CrossRefGoogle Scholar