Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T00:26:40.915Z Has data issue: false hasContentIssue false

Integrating genetics and genomics to identify new leads for the control of Eimeria spp.

Published online by Cambridge University Press:  12 May 2005

M. W. SHIRLEY
Affiliation:
Institute for Animal Health, Compton Laboratory, Compton, Nr Newbury, Berks., UK, RG20 7NN.
D. BLAKE
Affiliation:
Institute for Animal Health, Compton Laboratory, Compton, Nr Newbury, Berks., UK, RG20 7NN.
S. E. WHITE
Affiliation:
Institute for Animal Health, Compton Laboratory, Compton, Nr Newbury, Berks., UK, RG20 7NN.
R. SHERIFF
Affiliation:
Institute for Animal Health, Compton Laboratory, Compton, Nr Newbury, Berks., UK, RG20 7NN.
A. L. SMITH
Affiliation:
Institute for Animal Health, Compton Laboratory, Compton, Nr Newbury, Berks., UK, RG20 7NN.

Abstract

Eimerian parasites display a biologically interesting range of phenotypic variation. In addition to a wide spectrum of drug-resistance phenotypes that are expressed similarly by many other parasites, the Eimeria spp. present some unique phenotypes. For example, unique lines of Eimeria spp. include those selected for growth in the chorioallantoic membrane of the embryonating hens egg or for faster growth (precocious development) in the mature host. The many laboratory-derived egg-adapted or precocious lines also share a phenotype of a marked attenuation of virulence, the basis of which is different as a consequence of the in ovo or in vivo selection procedures used. Of current interest is the fact that some wild-type populations of Eimeria maxima are characterized by an ability to induce protective immunity that is strain-specific. The molecular basis of phenotypes that define Eimeria spp. is now increasingly amenable to investigation, both through technical improvements in genetic linkage studies and the availability of a comprehensive genome sequence for the caecal parasite E. tenella. The most exciting phenotype in the context of vaccination and the development of new vaccines is the trait of strain-specific immunity associated with E. maxima. Recent work in this laboratory has shown that infection of two inbred lines of White Leghorn chickens with the W strain of E. maxima leads to complete protection to challenge with the homologous parasite, but to complete escape of the heterologous H strain, i.e. the W strain induces an exquisitely strain-specific protective immune response with respect to the H strain. This dichotomy of survival in the face of immune-mediated killing has been examined further and, notably, mating between a drug-resistant W strain and a drug-sensitive H strain leads to recombination between the genetic loci responsible for the specificity of protective immunity and resistance to the anticoccidial drug robenidine. Such a finding opens the way forward for genetic mapping of the loci responsible for the induction of protective immunity and integration with the genome sequencing efforts.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AARTS, H. J., VAN LITH, L. A. & KEIJER, J. ( 1998). High-resolution genotyping of Salmonella strains by AFLP-fingerprinting. Letters in Applied Microbiology 26, 131135.CrossRefGoogle Scholar
AJMONE-MARSAN, P., VALENTINI, A., CASSANDRO, M., VECCHIOTTI-ANTALDI, G., BERTONI, G. & KUIPER, M. ( 1997). AFLP markers for DNA fingerprinting in cattle. Animal Genetics 28, 418426.CrossRefGoogle Scholar
ALLEN, P. C. & FETTERER, R. H. ( 2002). Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clinical Microbiological Reviews 15, 5865.CrossRefGoogle Scholar
BARTA, J. R., COLES, B. A., SCHITO, M. L., FERNANDO, M. A., MARTIN, A. & DANFORTH, H. D. ( 1998). Analysis of infraspecific variation among five strains of Eimeria maxima from North America. International Journal for Parasitology 28, 485492.CrossRefGoogle Scholar
BIGGS, B. A., KEMP, D. J. & BROWN, G. V. ( 1989). Subtelomeric chromosome deletions in field isolates of Plasmodium falciparum and their relationship to loss of cytoadherence in vitro. Proceedings of the National Academy of Sciences, USA 86, 24282432.CrossRefGoogle Scholar
BLAKE, D. P., HESKETH, P., ARCHER, A., CARROLL, F., SMITH, A. L.& SHIRLEY, M. W. ( 2004). Parasite genetics and the immune host: recombination between antigenic types of Eimeria maxima is an entrée to the identification of immunoprotective antigens. Molecular and Biochemical Parasitology 138, 143152.CrossRefGoogle Scholar
BLAKE, D. P., SMITH, A. L. & SHIRLEY, M. W. ( 2003). Amplified Fragment Length Polymorphism analyses of Eimeria spp.: an improved process for genetic studies of recombinant parasites. Parasitology Research 90, 473475.Google Scholar
BREED, D. G., SCHETTERS, T. P., VERHOEVEN, N. A., BOOT-GROENINK, A., DORRESTEIN, J. & VERMEULEN, A. N. ( 1999). Vaccination against Eimeria tenella infection using a fraction of E. tenella sporozoites selected by the capacity to activate T cells. International Journal for Parasitology 29, 12311240.Google Scholar
CANNING, E. U. & ANWAR, M. ( 1968). Studies on meiotic division in coccidial and malarial parasites. Journal of Protozoology 15, 290298.CrossRefGoogle Scholar
CHAPMAN, H. D. ( 1984). Development by genetic recombination of a line of Eimeria tenella resistant to robenidine, decoquinate and amprolium. Zeitschrift für Parasitenkunde 70, 437441.CrossRefGoogle Scholar
CHAPMAN, H. D., CHERRY, T. E., DANFORTH, H. D., RICHARDS, G., SHIRLEY, M. W. & WILLIAMS, R. B. ( 2002). Sustainable coccidiosis control in poultry production: the role of live vaccines. International Journal for Parasitology 32, 617629.CrossRefGoogle Scholar
CHAPMAN, H. D. & JOHNSON, Z. B. ( 1992). Oocysts of Eimeria in the litter of broilers reared to eight weeks of age before and after withdrawal of lasalocid or salinomycin. Poultry Science 71, 13421347.CrossRefGoogle Scholar
CHAPMAN, H. D. & ROSE, M. E. ( 1986). Cloning of Eimeria tenella in the chicken. Journal of Parasitology 72, 605606.CrossRefGoogle Scholar
CHAPMAN, H. D. & SHIRLEY, M. W. ( 2003). The Houghton strain of Eimeria tenella: a review of the type strain selected for genome sequencing. Avian Pathology 32, 115127.CrossRefGoogle Scholar
CORCORAN, L. M., FORSYTH, K. P., BIANCO, A. E., BROWN, G. V. & KEMP, D. J. ( 1986). Chromosome size polymorphisms in Plasmodium falciparum can involve deletions and are frequent in natural parasite populations. Cell 44, 8795.CrossRefGoogle Scholar
CORCORAN, L. M., THOMPSON, J. K., WALLIKER, D. & KEMP, D. J. ( 1988). Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in Plasmodium falciparum. Cell 53, 807813.CrossRefGoogle Scholar
CORNELISSEN, A. W., OVERDULVE, J. P. & VAN DER PLOEG, M. ( 1984). Determination of nuclear DNA of five eucoccidian parasites, Isospora (Toxoplasma) gondii, Sarcocystis cruzi, Eimeria tenella, E. acervulina and Plasmodium berghei, with special reference to gamontogenesis and meiosis in I. (T.) gondii. Parasitology 88, 531553.Google Scholar
COWMAN, A. F. & LEW, A. M. ( 1989). Antifolate drug selection results in duplication and rearrangement of chromosome 7 in Plasmodium chabaudi. Molecular and Cellular Biology 9, 51825188.CrossRefGoogle Scholar
CROUCH, C. F., ANDREWS, S. J., WARD, R. G. & FRANCIS, M. J. ( 2003). Protective efficacy of a live attenuated anti-coccidial vaccine administered to 1-day-old chickens. Avian Pathology 32, 297304.CrossRefGoogle Scholar
DEAR, P. H., BANKIER, A. T. & PIPER, M. B. ( 1998). A high-resolution metric HAPPY map of human chromosome 14. Genomics 48, 232241.CrossRefGoogle Scholar
DEAR, P. H. & COOK, P. R. ( 1989). Happy mapping: a proposal for linkage mapping the human genome. Nucleic Acids Research 17, 67956807.CrossRefGoogle Scholar
DEAR, P. H. & COOK, P. R. ( 1993). Happy mapping: linkage mapping using a physical analogue of meiosis. Nucleic Acids Research 21, 1320.CrossRefGoogle Scholar
FERNANDO, M. A. & PASTERNAK, J. J. ( 1991). Eimeria spp. of the domestic fowl: resolution of chromosomes by field inversion gel electrophoresis. Experimental Parasitology 72, 306310.Google Scholar
FITZ-COY, S. H. ( 1992). Antigenic variation among strains of Eimeria maxima and E. tenella of the chicken. Avian Diseases 36, 4043.CrossRefGoogle Scholar
GARDNER, M. J., HALL, N., FUNG, E., WHITE, O., BERRIMAN, M., HYMAN, R. W., CARLTON, J. M., PAIN, A., NELSON, K. E., BOWMAN, S., PAULSEN, I. T., JAMES, K., ETSEN, J. A., RUTHERFORD, K., SALZBERG, S. L., CRAIG, A., KYES, S., CHAN, M. S., NENE, V., SHALLOM, S. J., SUH, B., PETERSON, J., ANGIUOLI, S., PERTEA, M., ALLEN, J., SELENGUT, J., HAFT, D., MATHER, M. W., VAIDYA, A. B., MARTIN, D. M., FAIRLAMB, A. H., FRAUNHOLZ, M. J., ROOS, D. S., RALPH, S. A., McFADDEN, G. I., CUMMINGS, L. M., SUBRAMANIAN, G. M., MUNGALL, C., VENTER, J. C., CARUCCI, D. J., HOFFMAN, S. L., NEWBOLD, C., DAVIS, R. W., FRASER, C. M. & BARRELL, B. ( 2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498511.CrossRefGoogle Scholar
HABERKORN, A. ( 1970). Die Eintwicklung von Eimeria falciformis (Eimer 1870) in der weiben Maus. Zeitschrift für Parasitenkunde 34, 4967.CrossRefGoogle Scholar
JEFFERS, T. K. ( 1974 a). Genetic transfer of anticoccidial drug resistance in Eimeria tenella. Journal of Parasitology 60, 900904.Google Scholar
JEFFERS, T. K. ( 1974 b). Immunization against Eimeria tenella using an attenuated strain. 15th World's Poultry Congress Proceedings, New Orleans 11th–16th August, 1974, 105107.Google Scholar
JEFFERS, T. K. ( 1975). Attenuation of Eimeria tenella through selection for precociousness. Journal of Parasitology 61, 10831090.CrossRefGoogle Scholar
JEFFERS, T. K. ( 1976). Genetic recombination of precociousness and anticoccidial drug resistance in Eimeria tenella. Zeitschrift für Parasitenkunde 50, 251255.CrossRefGoogle Scholar
JENKINS, M. C. ( 1998). Progress on developing a recombinant coccidiosis vaccine. International Journal for Parasitology 28, 11111119.CrossRefGoogle Scholar
JOHNSTON, W. T., SHIRLEY, M. W., SMITH, A. L. & GRAVENOR, M. B. ( 2001). Modelling host cell availability and the crowding effect in Eimeria infections. International Journal for Parasitology 31, 10701081.CrossRefGoogle Scholar
JORGENSEN, W. & ANDERSON, G. ( 2001). Development of Australian live vaccines against coccidiosis: selection, isolation and attenuation. Proceedings of the VIII International Coccidiosis Conference, Cairns, Australia, Australian Society for Parasitology Inc., Queensland 101102.
JOYNER, L. P. & NORTON, C. C. ( 1975). Transferred drug-resistance in Eimeria maxima. Parasitology 71, 385392.CrossRefGoogle Scholar
KARIM, M. J. & TREES, A. J. ( 1990). Isolation of five species of Eimeria from chickens in Bangladesh. Tropical Animal Health Production 22, 153159.CrossRefGoogle Scholar
KELLEHER, M. & TOMLEY, F. M. ( 1998). Transient expression of beta-galactosidase in differentiating sporozoites of Eimeria tenella. Molecular and Biochemical Parasitology 97, 2131.CrossRefGoogle Scholar
LEE, E. H., REMMLER, O. & FERNANDO, M. A. ( 1977). Sexual differentiation in Eimeria tenella (Sporozoa: Coccidia). Journal of Parasitology 63, 155156.CrossRefGoogle Scholar
LILLEHOJ, H. S., CHOI, K. D., JENKINS, M. C., VAKHARIA, V. N., SONG, K. D., HAN, J. Y. & LILLEHOJ, E. P. ( 2000). A recombinant Eimeria protein inducing interferon-gamma production: comparison of different gene expression systems and immunization strategies for vaccination against coccidiosis. Avian Diseases 44, 379389.CrossRefGoogle Scholar
LONG, P. L. ( 1974). Experimental infection of chickens with two species of Eimeria isolated from the Malaysian jungle fowl. Parasitology 69, 337347.CrossRefGoogle Scholar
LUNDEN, A., THEBO, P., GUNNARSSON, S., HOOSHMIAN-RAD, P., TAUSON, R. & UGGLA, A. ( 2000). Eimeria infections in litter-based, high stocking density systems for loose-housed laying hens in Sweden. British Poultry Science 41, 440447.CrossRefGoogle Scholar
LYNCH, R. A., PIPER, M., BANKIER, A., BHUGRA, B., SURTI, U., LIU, J., BUCKLER, A., DEAR, P. H. & MENON, A. G. ( 1998). Genomic and functional map of the chromosome 14 t(12; 14) breakpoint cluster region in uterine Leiomyoma. Genomics 52, 1726.CrossRefGoogle Scholar
McDOUGALD, L. R., FULLER, L. & MATTIELLO, R. ( 1997). A survey of Coccidia on 43 poultry farms in Argentina. Avian Diseases 41, 923929.CrossRefGoogle Scholar
McDOUGALD, L. R., FULLER, L. & SOLIS, J. ( 1986). Drug-sensitivity of 99 isolates of coccidia from broiler farms. Avian Diseases 30, 690694.CrossRefGoogle Scholar
MARTIN, A. G., DANFORTH, H. D., BARTA, J. R. & FERNANDO, M. A. ( 1997). Analysis of immunological cross-protection and sensitivities to anticoccidial drugs among five geographical and temporal strains of Eimeria maxima. International Journal for Parasitology 27, 527533.CrossRefGoogle Scholar
MEKSEM, K., LEISTER, D., PELEMAN, J., ZABEAU, M., SALAMINI, F. & GEBHARDT, C. ( 1995). A high-resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Molecular and General Genetics 249, 7481.CrossRefGoogle Scholar
NAKAMURA, T., KONISHI, T., KAWAGUCHI, H. & HAYASHI, Y. ( 1988). Glucose phosphate isomerase isozymes as genetic markers for lines of Eimeria tenella. Parasitology 96, 281288.CrossRefGoogle Scholar
NORTON, C. C. & HEIN, H. E. ( 1976). Eimeria maxima: a comparison of two laboratory strains with a fresh isolate. Parasitology 72, 345354.CrossRefGoogle Scholar
OXBROW, A. I. ( 1973). Strain specific immunity to Plasmodium berghei: a new genetic marker. Parasitology 67, 1727.CrossRefGoogle Scholar
PIPER, M. B., BANKIER, A. T. & DEAR, P. H. ( 1998). A HAPPY map of Cryptosporidium parvum. Genome Research 8, 12991307.CrossRefGoogle Scholar
POGONKA, T., KLOTZ, C., KOVACS, F. & LUCIUS, R. ( 2003). A single dose of recombinant Salmonella typhimurium induces specific humoral immune responses against heterologous Eimeria tenella antigens in chicken. International Journal for Parasitology 33, 8188.CrossRefGoogle Scholar
ROLLINSON, D., JOYNER, L. P. & NORTON, C. C. ( 1979). Eimeria maxima: the use of enzyme markers to detect the genetic transfer of drug resistance between lines. Parasitology 78, 361367.CrossRefGoogle Scholar
ROSE, M. E. ( 1967). Immunity to Eimeria brunetti and Eimeria maxima infections in the fowl. Parasitology 57, 363370.CrossRefGoogle Scholar
ROSE, M. E. ( 1974). The early development of immunity to Eimeria maxima in comparison with that to Eimeria tenella. Parasitology 68, 3545.CrossRefGoogle Scholar
SHERIFF, R., CARROLL, F. & SHIRLEY, M. W. ( 2003). Molecular karyotypes of Eimeria tenella resolved by PFGE: an evaluation of different agaroses. Parasitology Research 89, 317319.Google Scholar
SHIRLEY, M. W. ( 1978). Electrophoretic variation of enzymes: a further marker for genetic studies of the Eimeria. Zeitschrift für Parasitenkunde 57, 8387.CrossRefGoogle Scholar
SHIRLEY, M. W. ( 1980). Maintenance of Eimeria maxima by serial passage of single sporocysts. Journal of Parasitology 56, 172173.CrossRefGoogle Scholar
SHIRLEY, M. W. ( 1994). The genome of Eimeria tenella: further studies on its molecular organisation. Parasitology Research 80, 366373.CrossRefGoogle Scholar
SHIRLEY, M. W. ( 1997). Eimeria spp. from the chicken: occurrence, identification and genetics. Acta Veterinaria Hungarica 45, 331347.Google Scholar
SHIRLEY, M. W. ( 2000). The genome of Eimeria spp., with special reference to E. tenella – a coccidium from the chicken. International Journal for Parasitology 30, 485493.Google Scholar
SHIRLEY, M. W., BUSHELL, A. C., BUSHELL, J. E., McDONALD, V. & ROBERTS, B. ( 1995). A live attenuated vaccine for the control of avian coccidiosis: trials in broiler breeders and replacement layer flocks in the United Kingdom. Veterinary Record 137, 453457.CrossRefGoogle Scholar
SHIRLEY, M. W. & HARVEY, D. A. ( 1996). Eimeria tenella: infection with a single sporocyst gives a clonal population. Parasitology 112, 523528.CrossRefGoogle Scholar
SHIRLEY, M. W. & HARVEY, D. A. ( 2000). A genetic linkage map of the apicomplexan protozoan parasite Eimeria tenella. Genome Research 10, 15871593.CrossRefGoogle Scholar
SHIRLEY, M. W., IVENS, A., GRUBER, A., MADEIRA, A. M. B., WAN, K.-L., DEAR, P. H. & TOMLEY, F. M. ( 2004). The Eimeria genome projects: a sequence of events. Trends in Parasitology 20, 199201.CrossRefGoogle Scholar
SHIRLEY, M. W. & MILLARD, B. J. ( 1989). A novel method for cloning Eimeria praecox in the chicken. Journal of Parasitology 75, 324325.CrossRefGoogle Scholar
SIBLEY, L. D., LEBLANC, A. J., PFEFFERKORN, E. R. & BOOTHROYD, J. C. ( 1992). Generation of a restriction fragment length polymorphism linkage map for Toxoplasma gondii. Genetics 132, 10031015.Google Scholar
SINNIS, P. & WELLEMS, T. E. ( 1988). Long-range restriction maps of Plasmodium falciparum chromosomes: crossing over and size variation among geographically distant isolates. Genomics 3, 287295.CrossRefGoogle Scholar
SMITH, A. L., HESKETH, P., ARCHER, A. & SHIRLEY, M. W. ( 2002). Antigenic diversity in Eimeria maxima and the influence of host genetics and immunization schedule on cross-protective immunity. Infection and Immunity 70, 24722479.CrossRefGoogle Scholar
SONG, K. D., LILLEHOJ, H. S., CHOI, K. D., YUN, C. H., PARCELLS, M. S., HUYNH, J. T. & HAN, J. Y. ( 2000). A DNA vaccine encoding a conserved Eimeria protein induces protective immunity against live Eimeria acervulina challenge. Vaccine 19, 243252.CrossRefGoogle Scholar
SU, X., FERDIG, M. T., HUANG, Y., HUYNH, C. Q., LIU, A., YOU, J., WOOTTON, J. C. & WELLEMS, T. E. ( 1999). A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 286, 13511353.CrossRefGoogle Scholar
SUTTON, C. A., SHIRLEY, M. W. & McDONALD, V. ( 1986). Genetic recombination of markers for precocious development, arprinocid resistance, and isoenzymes of glucose phosphate isomerase in Eimeria acervulina. Journal of Parasitology 72, 965967.CrossRefGoogle Scholar
VERMEULEN, A. N. ( 1998). Progress in recombinant vaccine development against coccidiosis. A review and prospects into the next millennium. International Journal for Parasitology 28, 11211130.Google Scholar
VOS, P., HOGERS, R., BLEEKER, M., REIJANS, M., VAN DE LEE, T., HORNES, M., FRIJTERS, A., POT, J., PELEMAN, J., KUIPER, M. & ZABEAU, M. ( 1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 44074414.CrossRefGoogle Scholar
WALLACH, M. ( 2001). The development of a maternally-based, subunit vaccine CoxAbic, against coccidiosis in chickens. Proceedings of the VIIIth International Coccidiosis Conference, Cairns, Australia, Australian Society for Parasitology Inc., Queensland, 148.
WANG, C. C. & SIMASHKEVICH, P. M. ( 1980). A comparative study of the biological activities of arprinocid and arprinocid-1-N-oxide. Molecular and Biochemical Parasitology 1, 335345.CrossRefGoogle Scholar
WANG, C. C., TOLMAN, R. L., SIMASHKEVICH, P. M. & STOTISH, R. L. ( 1979). Arprinocid, an inhibitor of hypoxanthine-guanine transport. Biochemical Pharmacology 28, 22492260.CrossRefGoogle Scholar
WILLIAMS, R. B. ( 1998). Epidemiological aspects of the use of live anticoccidial vaccines for chickens. International Journal for Parasitology 28, 10891098.CrossRefGoogle Scholar
WILLIAMS, R. B. ( 2002 a). Anticoccidial vaccines for broiler chickens: pathways to success. Avian Pathology 31, 317353.Google Scholar
WILLIAMS, R. B. ( 2002 b). Fifty years of anticoccidial vaccines for poultry (1952–2002). Avian Diseases 46, 775802.Google Scholar