Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T08:23:00.624Z Has data issue: false hasContentIssue false

Influence of Steinernema feltiae (Filipjev) Wouts, Mracek, Gerdin and Bedding DD136 strain on the humoral and haemocytic responses of Galleria mellonella (L.) larvae to selected bacteria

Published online by Cambridge University Press:  06 April 2009

G. B. Dunphy
Affiliation:
Pestology Center, Department of Biological Sciences, Simon Fraser University, Vancouver, British Columbia, CanadaV5A 1S6
J. M. Webster
Affiliation:
Pestology Center, Department of Biological Sciences, Simon Fraser University, Vancouver, British Columbia, CanadaV5A 1S6

Extract

Examination of the short-term interaction of the haemocytes and lysozyme of Galleria mellonella larvae with the entomogenous nematode Steinernema feltiae DD136, in vitro revealed that the nematodes did not reduce the adhesion of Bacillus subtilis or Xenorhabdus nematophilus subsp. nematophilus to larval granulocytes or plasmatocytes. There was no evidence of humoral, sheath or cellular encapsulation of S. feltiae in the haemolymph in vitro or in vivo. Compared with the phosphate-buffered saline-injected larvae the axenic nematodes did not alter the total or differential haemocyte counts during the initial 4 h of parasitism. The ability of the insect larvae to remove B. subtilis and X. nematophilus from the haemolymph was not influenced by axenic S. feltiae. The bacteria from the intestine of surface disinfected, monoxenically cultured S. feltiae elevated the larval total haemocyte counts and damaged the haemocytes. The activity of larval lysozyme was not influenced by axenic S. feltiae.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhurst, R. J. (1980). Morphological and functional dimorphism in Xenorhabdus spp., Bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterohabditis. Journal of General Microbiology 121, 303–9.Google Scholar
Barriga, O. O. (1980). Responses of β–cells to mitogens and antigen in mice receiving isogenic splenocytes from animals treated with Trichinella extract. Journal of Parasitology 66, 730–4.CrossRefGoogle Scholar
Boemarb, N., Laumond, C. & Luciani, J. (1982). Miseen évidence d'une toxicogènese provoquée parle Nématode axénique entomophage, Neoaplectana carpocapsae weiser chez l'insecte axénique Galleria mellonella L. Comptes Rendus des Sciences de ll'académie des Sciences (Paris) 295, 543–6.Google Scholar
Boman, H. G. (1981). Insect responses to microbial infections. In Microbial Control of Pests and Plant Diseases (ed. Burges, H. D.), pp. 769784. New york: Academic Press.Google Scholar
Burman, M. (1982). Neoaplectana carpocapsae: Toxin production by axenic insect parasitic nematodes. Nematologica 28, 6270.CrossRefGoogle Scholar
Chadwjck, J. S. (1970). Relation oflysozyme concentration to acquired immunity against Pseudomonas aeruginosa in Galleria mellonella. Journal of Invertebrate Pathology 15, 455–6.CrossRefGoogle Scholar
Chain, B. M. & Anderson, R. S. (1982). Selective depletion of the plasmatocytes in Galleria mellonella following injection of bacteria. Journal of insect physiology 28, 377–84.CrossRefGoogle Scholar
Chain, B. M. & Anderson, R. S. (1983). Inflammation in insects: The release of a plasmatocyte depletion factor following interaction between bacteria and haemocvtes. Journal of insect physiology 29, 14.CrossRefGoogle Scholar
Dunphy, G. B., Morton, D. B. & Chadwick, J. M. (1985). Pathogenicity of lipopolysaccharide mutants of Pseudomonas aeruginosa for Galleria mellonella. II. Host hemocyte responses to P. Aeruginosa. Journal of Invertebrate Pathology (in the press).Google Scholar
Dunphy, G. B. & Webster, J. M. (1984). Interaction of Xenorhabdus nematophilus subsp. nematophilus with the haemolymph of Galleria mellonella. Journal of insect physiology 30, 883–9.CrossRefGoogle Scholar
Dutky, S. R., Thompson, J. V. & Cantwell, G. E. (1962). A technique for mass rearing the greater wax moth (Lepidoptera:Galleridae). Proceedings of the Entomological Society of Washington 64, 56–8.Google Scholar
Dye, D. W. (1968). A taxonomic study of the genus Erwinia. I. The ‘amylovora’ group. New Zealand Journal of science 11, 590607.Google Scholar
Gagen, S. J. & Ratcliffe, N. A. (1976). Studies on the in vivo cellular reactions and fate of injected bacteria in Galleria mellonella and Pieris brassica. Journal of invertebrate pathology 28, 1724.CrossRefGoogle Scholar
Götz, p., Boman, a. & Boman, H. G. (1981). Interaction between insect immunity and an insect-pathogenic nematode with symbiotic bacteria. Proceedings of the Royal Society of London, B 212, 334–50.Google Scholar
Götz, p. & Gülzow, A. (1982). How a nematode can destroy insect immunity. International Colloquium of Invertebrate Pathology, Brighton, U.K. pp. 9395.Google Scholar
Kamionek, M. (1975). Effect of heat-killed cells of Achromobacter nematophilus Poinaret Thomas, and the fraction (endotoxin) isolated from them on Galleria mellonella L. Caterpillars. Bulletin de l'Academie Polonaise des science 23, 277–81.Google Scholar
Kinoshita, T. & Inoue, K. (1977). Bactericidal activity of the normal, cell-free hemolymph of silkworms (Bombyx mori). Infections and Immunity 16, 32–6.CrossRefGoogle ScholarPubMed
Ljunstrom, I. (1980). Studies on the responsiveness of spleen cells to various polyclonal T and B cell activators during Trichinella spiralis infection. Parasite Immunology 2, 111–20.CrossRefGoogle Scholar
Mohkig, W. & Messner, B. (1968). Immunreaktionen bei Insekten. I. Lysozym als grundlegender antibakterieller Facktor im humoralen Abwehremechanismus der Insekten. Biologisches Zentralblatt 87, 439–70.Google Scholar
Mohrig, W., Schittek, D. & Hanschke, R. (1979). Immunological activation of phagocytic cells in Galleria mellonella. Journal of Invertebrate pathology 34, 84–7.CrossRefGoogle Scholar
Mohrig, W., Storz, R. & Messner, B. (1970). Immunreaktionen bei insekten. III. Haemocyten- reaktionen und Lysozymverhalten bei Galleria mellonella L. Biologisches Zentralblatt 89, 611–39.Google Scholar
Morton, D. B., Dunphy, G. B. & Chadwick, J. S. (1985). Hemocytic reactions of immune and non-immune Galleria mellonella larvae to Proteus mirabilis. Developmental and comparative immunology (in the press).Google Scholar
Nappi, A. J. (1975). Parasite encapsulation in insects. In Invertebrate Immunity (ed. Maramorosh, K. and Shope, R. E.), pp. 293326. New york: Academic press.CrossRefGoogle Scholar
Nappi, A. J. & Stoffolano, J. G. jr. (1972 a). Distribution of haemocytes in larvae of Musca domestica and Musca autumnalis and possible chemotaxis during parasitization. Journal of Insect Physiology 18, 169–79.CrossRefGoogle Scholar
Nappi, A. J. & stoffolano, J. G. jr (1972 b). Haemocytic changes associated with the immune reaction of nematode infected larvae of Orthellia caesarion. Parasitology 65, 295302.CrossRefGoogle ScholarPubMed
Natrella, M. G. (1972). The relation between confidence intervals and tests of significance. In Statistical Issues (ed. Kirk, R. E.), pp. 113117, Monterey: Brooks/Cole Publishing Company.Google Scholar
Poinar, G. O. jr. & Himsworth, P. T. (1967). Neoaplectana parasitism of larvae of the Greater Wax Moth, Galleria mellonella. Journal of invertebrate pathology 9, 241–6.CrossRefGoogle Scholar
Poinar, C. O. jr. & Thomas, G. M. (1966). Significance of Achromobacter nematophilus poinar and Thomas (Achromobacteriaceae: Eubacteriales) in the development of the nematode, DD-136 (Neoaplectana sp. Steinernematidae). Parasitology 56, 385–90.CrossRefGoogle Scholar
Powning, R. F. & Irzykiewicz, H. (1973). Studies on insect bacteriolytic enzymes. Lysozyme in haemolymph of Galleria mellonella and Bombyx mori. Comparative Biochemistry and Physiology 45 B, 669–86.Google ScholarPubMed
Ratcliffe, N. A. (1975). Spherule cell-test particles interactions in monoiayer cultures of pieris brassicae hemocytes. Journal of Invertebrate Pathology 26, 217–23.CrossRefGoogle ScholarPubMed
Ratcliffe, N. A. & Rowley, A. F. (1975). Cellular defense reactions of insect hemocytes in vitro: Phagocytosis in a new suspension culture system. Journal of invertebrate pathology 26, 225–33.CrossRefGoogle Scholar
Seryczynska, H. & Kamionek, M. (1972). Defense reactions of Galleria mellonella L. Caterpillars under the influence of the parasite nematodes Neoaplectana carpocapsae Weiser. Bulletin de l' Academie Polonause des Science 20, 739–42.Google Scholar
Sokal, R. R. & Rohlf, F. J. (1969). Biometry. San francisco: W. H. Freeman.Google Scholar
Stephens, J. M. (1963). Effects of active immunization on total hemocyte counts of larvae of Galleria mellonella (Linnaeus). Journal of insect pathology 5, 152–6.Google Scholar
Webster, J. M. & Rutherford, T. A. (1963). Enhancing the use of entomogenous nematodes in controlling insect pests. Tenth International Congress of Plant Protection 2, 786.Google Scholar
Wouts, W. M. (1981). Mass production of the entomogenous nematode Heterorhabditis heliothidis (Nematode: Heterorhabditidae) on artificial media. Journal of Nematology 13, 467–9.Google ScholarPubMed
Wouts, W. M., Mracek, Z., Gerdin, S. & Bedding, R. A. (1982). Neoaplectana Steiner, 1929 a junior synonym of Steinernema Travassus, 1927 (Nematoda; Rhabditida). Systematic Parasitology 4, 147–54.CrossRefGoogle Scholar
Ziprin, R. & Hartmann, P. A. (1971). Toxicity of Pseudomonas aeruginosa bacterins and cell walls to the greater wax moth, Galleria mellonella. Journal of Invertebrate Pathology 17, 265–9.CrossRefGoogle Scholar