Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T12:22:17.767Z Has data issue: false hasContentIssue false

The influence of sampling effort and the performance of the Kato-Katz technique in diagnosing Schistosoma mansoni and hookworm co-infections in rural Côte d'Ivoire

Published online by Cambridge University Press:  19 January 2004

M. BOOTH
Affiliation:
Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
P. VOUNATSOU
Affiliation:
Swiss Tropical Institute, PO Box, CH–4002 Basel, Switzerland
E. K. N'GORAN
Affiliation:
UFR Biosciences, Université de Cocody, 22 BP 770, Abidjan 22, Côte d'Ivoire
M. TANNER
Affiliation:
Swiss Tropical Institute, PO Box, CH–4002 Basel, Switzerland
J. UTZINGER
Affiliation:
Office of Population Research, Princeton University, Princeton, NJ 08544, USA

Abstract

The Kato-Katz method is widely used for diagnosing helminth infections in epidemiological surveys, but is known to have a low sensitivity. In the case of Schistosoma mansoni, statistical methods have been developed to compensate for the poor sensitivity, but the same is not true of any other helminth parasite, or infections with multiple-helminth species. We screened 101 schoolchildren from a rural area of Côte d'Ivoire over 5 consecutive days and made 5 Kato-Katz readings from each stool specimen. We estimated single and dual-species infections with S. mansoni and hookworm based on raw egg count data and after developing a latent-class model. The cumulative prevalence of co-infections was estimated at 9·9% after reading slides on the first day, and 57·0% after reading all 25 slides per person. The latent class model yielded a co-infection prevalence estimate of 79·6%, with marginal prevalence estimates for hookworm and S. mansoni infections of 83·9% and 91·6% respectively. The sensitivities of a single Kato-Katz thick smear for detection of S. mansoni alone, hookworms alone, or S. mansoni plus hookworms were 22·4%, 8·0% and 17·7%, respectively. In the current setting this could be attributable to low infection intensities of both parasites, combined with intra-specimen and day-to-day variation in egg output. If confirmed in other settings, these findings have implications for estimating the prevalence of multiple species helminth infections, and hence the design and implementation of efficacious and cost-effective control programmes.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ALLEN, A. V. & RIDLEY, D. S. ( 1970). Further observations on the formol-ether concentration technique for faecal parasites. Journal of Clinical Pathology 23, 545546.CrossRefGoogle Scholar
BOOTH, M. & BUNDY, D. A. ( 1995). Estimating the number of multiple-species geohelminth infections in human communities. Parasitology 111, 645653.CrossRefGoogle Scholar
BROOKER, S., BOOTH, M. & GUYATT, H. ( 1999). Comparisons of schistosome and geohelminth infection prevalences in school-aged children from selected areas of Africa: implications for rapid assessment and combined control. Transactions of the Royal Society of Tropical Medicine and Hygiene 93, 125126.CrossRefGoogle Scholar
CARABIN, H., GUYATT, H. & ENGELS, D. ( 2000). A comparative analysis of the cost-effectiveness of treatment based on parasitological and symptomatic screening for Schistosoma mansoni in Burundi. Tropical Medicine and International Health 5, 192202.CrossRefGoogle Scholar
DE VLAS, S. J., ENGELS, D., RABELLO, A. L., OOSTBURG, B. F., VAN LIESHOUT, L., POLDERMAN, A. M., VAN OORTMARSSEN, G. J., HABBEMA, J. D. & GRYSEELS, B. ( 1997). Validation of a chart to estimate true Schistosoma mansoni prevalences from simple egg counts. Parasitology 114, 113121.CrossRefGoogle Scholar
DE VLAS, S. J., GRYSEELS, B., VAN OORTMARSSEN, G. J., POLDERMAN, A. M. & HABBEMA, J. D. ( 1992). A model for variations in single and repeated egg counts in Schistosoma mansoni infections. Parasitology 104, 451460.CrossRefGoogle Scholar
ENGELS, D., NAHIMANA, S. & GRYSEELS, B. ( 1996). Comparison of the direct faecal smear and two thick smear techniques for the diagnosis of intestinal parasitic infections. Transactions of the Royal Society of Tropical Medicine and Hygiene 90, 523525.CrossRefGoogle Scholar
ENGELS, D., SINZINKAYO, E., DE VLAS, S. J. & GRYSEELS, B. ( 1997). Intraspecimen fecal egg count variation in Schistosoma mansoni infection. American Journal of Tropical Medicine and Hygiene 57, 571577.CrossRefGoogle Scholar
EZZATI, M., LOPEZ, A. D., RODGERS, A., VANDER HOORN, S., MURRAY, C. J. L. & COMPARATIVE RISK ASSESSMENT COLLABORATING GROUP ( 2002). Selected major risk factors and global and regional burden of disease. Lancet 360, 13471360.CrossRefGoogle Scholar
GELFAND, A. E. & SMITH, A. F. M. ( 1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Asscociation 85, 389409.CrossRefGoogle Scholar
GOODMAN, L. A. ( 1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika 61, 215231.CrossRefGoogle Scholar
HALL, A. ( 1981). Quantitative variability of nematode egg counts in faeces: a study among rural Kenyans. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 682687.CrossRefGoogle Scholar
HAMILTON, J. V., KLINKERT, M. & DOENHOFF, M. J. ( 1998). Diagnosis of schistosomiasis: antibody detection, with notes on parasitological and antigen detection methods. Parasitology 117 (Suppl.), S41S57.Google Scholar
HOWARD, S. C., DONNELLY, C. A. & CHAN, M. S. ( 2001). Methods for estimation of associations between multiple species parasite infections. Parasitology 122, 233251.CrossRefGoogle Scholar
KATZ, N., CHAVES, A. & PELLEGRINO, J. ( 1972). A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Revista do Instituto de Medicina Tropical de Sao Paulo 14, 397400.Google Scholar
KEISER, J., N'GORAN, E. K., SINGER, B. H., LENGELER, C., TANNER, M. & UTZINGER, J. (2002 a). Association between Schistosoma mansoni and hookworm infections among schoolchildren in Côte d'Ivoire. Acta Tropica 84, 3141.Google Scholar
KEISER, J., N'GORAN, E. K., TRAORÉ, M., LOHOURIGNON, K. L., SINGER, B. H., LENGELER, C., TANNER, M. & UTZINGER, J. ( 2002 b). Polyparasitism with Schistosoma mansoni, geohelminths, and intestinal protozoa in rural Côte d'Ivoire. Journal of Parasitology 88, 461466.Google Scholar
MARTIN, L. K. & BEAVER, P. C. ( 1968). Evaluation of Kato thick-smear technique for quantitative diagnosis of helminth infections. American Journal of Tropical Medicine and Hygiene 17, 382391.CrossRefGoogle Scholar
MONTRESOR, A., CROMPTON, D. W. T., BUNDY, D. A. P., HALL, A. & SAVIOLI, L. ( 1998). Guidelines for the Evaluation of Soil-Transmitted Helminthiasis and Schistosomiasis at Community Level. World Health Organization, Geneva.
MONTRESOR, A., CROMPTON, D. W. T., GYORKOS, T. W. & SAVIOLI, L. ( 2002). Helminth Control in School-Age Children. A Guide for Managers of Control Programmes. World Health Organization, Geneva.
MURRAY, C. J. L. & LOPEZ, A. D. ( 1997). Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 349, 14361442.CrossRefGoogle Scholar
POLMAN, K., DE VLAS, S. J., VAN LIESHOUT, L., DEELDER, A. M. & GRYSEELS, B. ( 2001). Evaluation of density-dependent fecundity in human Schistosoma mansoni infections by relating egg counts to circulating antigens through Deming regression. Parasitology 122, 161167.CrossRefGoogle Scholar
UTZINGER, J., BOOTH, M., N'GORAN, E. K., MÜLLER, I., TANNER, M. & LENGELER, C. ( 2001). Relative contribution of day-to-day and intra-specimen variation in faecal egg counts of Schistosoma mansoni before and after treatment with praziquantel. Parasitology 122, 537544.CrossRefGoogle Scholar
UTZINGER, J., VOUNATSOU, P., N'GORAN, E. K., TANNER, M. & BOOTH, M. ( 2002). Reduction in the prevalence and intensity of hookworm infections after praziquantel treatment for schistosomiasis infection. International Journal for Parasitology 32, 759765.CrossRefGoogle Scholar
WORLD HEALTH ORGANIZATION (2002). Prevention and control of schistosomiasis and soil-transmitted helminthiasis: report of the WHO expert committee. WHO Technical Report Series, No. 912. World Health Organization, Geneva.