Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T18:36:58.632Z Has data issue: false hasContentIssue false

The influence of desert temperature cycles on the reproductive biology of Pseudodiplorchis americanus (Monogenea)

Published online by Cambridge University Press:  06 April 2009

K. Tocque
Affiliation:
School of Biological Sciences, Queen Mary and Westfield College, London University, Mile End Road, London E1 4NS
R. C. Tinsley
Affiliation:
School of Biological Sciences, Queen Mary and Westfield College, London University, Mile End Road, London E1 4NS

Extract

Pseudodiplorchis americanus has an extremely brief opportunity for transmission, restricted to less than 24 h in the year when the host (Scaphiopus couchii) enters water to breed. This strict annual cycle means that invading worms have 1 year to complete reproductive development. Despite this, a large proportion of the parasite suprapopulation is not prepared for transmission at the time of host breeding. The present study correlates detailed soil temperatures for one field site in S.E. Arizona, spanning 3·5 years, with laboratory data on parasite growth and reproductive development at a series of controlled temperatures. Development is totally inhibited at 16°C. Optimal growth and development occurs at 25°C and is slower at both 20°C and a diurnal cycle fluctuating between 20 and 34°C (mean 27°C) (simulating summer temperatures experienced by host and parasite). The effective period for accumulation of infective stages by P. americanus in any one season varies according to the timing of the summer rains in consecutive years. Between 1985 and 1988, the interval between host breedings varied from 11 to 13 months and the period when temperatures were above 20°C varied from 4 to 5·5 months per year. Since the first month post-infection (p.i.) consists of pre-reproductive development, first-year worms have only 3–4·5 months to produce infective larvae. In the shortest seasons, these worms may not be able to complete reproductive preparation in time for the first opportunity for transmission. In different parts of the geographical distribution of S. couchii, different cycles of temperature, rainfall and host breeding occur; varying temperature regimes represent an important abiotic control of P. americanus reproductive biology and transmission.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bragg, A. N. (1961). A theory of the evolution of the spadefooted toads deduced principally from a study of their habits. Animal Behaviour 9, 178–86.CrossRefGoogle Scholar
Bragg, A. N. (1967). Recent studies on the spadefoot toads. Bios 38, 7584.Google Scholar
Chubb, J. C. (1977). Seasonal occurrence of helminths in freshwater fishes. I. Monogenea. Advances in Parasitology 15, 133–99.CrossRefGoogle ScholarPubMed
Combes, C. (1968). Biologie, écologie des cycles et biogéographie de digènes et monogènes d'amphibiens dans l'est des Pyrénées. Mémoires du Muséum National d'Histoire naturelle (Paris), série A Zoologie 51, 1195.Google Scholar
Combes, C. (1972). Écologie des Polystomatidae (Monogenea): facteurs influençant le volume et le rhythme de la ponte. International Journal for Parasitology 2, 233–8.CrossRefGoogle Scholar
Esch, G. W. (1983). The population and community ecology of cestodes. In Biology of Eucestoda, vol. 1 (ed. Arme, C. & Pappas, P. W.), pp. 81137. London: Academic Press.Google Scholar
Gallien, L. (1935). Recherches expérimentales sur la dimorphisme évolutif et la biologie de Polystoma integerrimum Frohl. Travaux du Station de Zoologie, Wimereux 12, 118.Google Scholar
Jackson, H. C. & Tinsley, R. C. (1988). Environmental influences on egg production by the monogenean Protopolystoma xenopodis. Parasitology 97, 115–28.CrossRefGoogle Scholar
Kearn, G. C. (1986). The eggs of monogeneans. Advances in Parasitology 25, 175273.CrossRefGoogle ScholarPubMed
Lamothe-Argumedo, R. (1986). Monogéneos de los anfibios de México VII. Hallazgo de Pseudodiplorchis americanus (Rodgers y Kuntz, 1940) Yamaguti 1963 en Baja California sur Mexico. Anales de Instituto de Biologia Universidad de Nacional Autónoma Mexico, Zoologia 56, 291300.Google Scholar
Mayhew, W. W. (1962). Scaphiopus couchii in California's Colorado desert. Herpetologia 18, 153–61.Google Scholar
Mayhew, W. W. (1965). Adaptations of amphibians (Scaphiopus couchii) to desert environments. American Midland Naturalist 74, 95109.CrossRefGoogle Scholar
McClanahan, L. Jr (1967). Adaptations of the spadefoot toad, Scaphiopus couchi, to desert environments. Comparative Biochemistry and Physiology 20, 7399.Google Scholar
McGuinnies, W. G. (1983). Discovering the Desert. University of Arizona Press, USA.Google Scholar
Ollerenshaw, C. B. (1974). Forecasting liver fluke disease. In Symposia of the British Society for Parasitology, vol. 12 (ed. Taylor, A. E. R. & Muller, R.), pp. 3352. Oxford and London: Blackwell Scientific Publications.Google Scholar
Rodgers, L. O. & Kuntz, R. E. (1940). A new polystomatid monogenean fluke from a spadefoot. The Wasmann Collector 4, 3740.Google Scholar
Ruibal, R., Tevis, L. & Roig, V. (1969). The terrestrial ecology of the spadefoot toad Scaphiopus hammondii. Copeia 1969, 571–84.Google Scholar
Stebbins, R. C. (1966). A Field Guide to Western Reptiles and Amphibians. Boston: Houghton Miflin Company.Google Scholar
Tinsley, R. C. (1983). Ovoviviparity in platyhelminth life-cycles. Parasitology 86, 161–96.CrossRefGoogle ScholarPubMed
Tinsley, R. C. & Earle, C. (1983). Invasion of vertebrate lungs by the polystomatid monogeneans Pseudodiplorchis americanus and Neodiplorchis scaphiopodis. Parasitology 86, 501–17.CrossRefGoogle Scholar
Tinsley, R. C. & Jackson, H. C. (1986). Intestinal migration in the life-cycle of Pseudodiplorchis americanus (Monogenea). Parasitology 93, 451–69.CrossRefGoogle Scholar
Tinsley, R. C. & Jackson, H. C. (1988). Pulsed transmission of Pseudodiplorchis americanus (Monogenea) between desert hosts (Scaphiopus couchii). Parasitology 97, 437–52.Google Scholar
Tocque, K. (1990). The reproductive strategy of a monogenean parasite in a desert environment. Ph.D. thesis, London University.Google Scholar
Tocque, K. & Tinsley, R. C. (1991). Asymmetric reproductive output by the monogenean Pseudodiplorchis americanus. Parasitology 102, 213–20.CrossRefGoogle ScholarPubMed
Turnage, W. V. (1937). Nocturnal surface-soil temperature, air temperatures, and ground inversions in southern Arizona. Monthly Weather Review 65, 189–90.2.0.CO;2>CrossRefGoogle Scholar
Wilson, R. A., Smith, G. & Thomas, M. R. (1982). Fascioliasis. In The Population Dynamics of Infectious Diseases: Theory and Applications (ed. Anderson, R. M.), pp. 262319. London and New York: Chapman and Hall.CrossRefGoogle Scholar