Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T08:24:10.608Z Has data issue: false hasContentIssue false

In vivo response of Mesocestoides vogae to human insulin

Published online by Cambridge University Press:  12 December 2008

L. CANCLINI
Affiliation:
Biochemistry Section, Department of Cellular and Molecular Biology, Faculty of Sciences, University of the Republic of Uruguay, Iguá 4225, 11400Montevideo, Uruguay
A. ESTEVES*
Affiliation:
Biochemistry Section, Department of Cellular and Molecular Biology, Faculty of Sciences, University of the Republic of Uruguay, Iguá 4225, 11400Montevideo, Uruguay
*
*Corresponding author: Biochemistry Section, Faculty of Sciences, Iguá 4225, 11400Montevideo, Uruguay. Fax: +598 (2) 525 2095. E-mail: [email protected]

Summary

Successful host invasion by parasitic helminths involves detection and appropriate response to a range of host-derived signals. Insulin signal response pathways are ancient and highly-conserved throughout the metazoans. However, very little is known about helminth insulin signalling and the potential role it may play in host-parasite interactions. The response of Mesocestoides vogae (Cestoda: Cyclophyllidea) larvae to human insulin was investigated, focusing on tyrosine-phosphorylation status, glucose content, survival and asexual reproduction rate. Parasite larvae were challenged with different levels of insulin for variable periods. The parameters tested were influenced by human insulin, and suggested a host-parasite molecular dialogue.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barbieri, M., Bonafe, M., Franceschi, C. and Paolisso, G. (2003). Insulin/IGF-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. American Journal of Physiology, Endocrinology and Metabolism 285, E1064E1071.CrossRefGoogle Scholar
Barthel, A. and Schmoll, D. (2003). Novel concepts in insulin regulation of hepatic gluconeogenesis. American Journal of Physiology, Endocrinology and Metabolism 285, E685E692.CrossRefGoogle ScholarPubMed
Britos, L., Dominguez, L., Ehrlich, R., and Marin, M. (2000). Effect of praziquantel on the strobilar development of Mesocestoides corti in vitro. Journal of Helminthology 74, 295299.CrossRefGoogle ScholarPubMed
Brogiolo, W., Stocker, H., Tomoatsu, I., Rintelen, F., Fernandez, R. and Hafen, E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Current Biology 11, 213221.CrossRefGoogle ScholarPubMed
Chang, L., Chiang, S.-H. and Saltiel, A. R. (2004). Insulin signaling and the regulation of glucose transport. Molecular Medicine 10, 712.CrossRefGoogle ScholarPubMed
Chen, C., Jack, J. and Garofalo, R. S. (1996). The Drosophila insulin receptor is required for normal growth. Endocrinology 137, 846856.CrossRefGoogle ScholarPubMed
Clemens, L. E. and Basch, P. F. (1989). Schistosoma mansoni: insulin independence. Experimental Parasitology 68, 223229.CrossRefGoogle ScholarPubMed
Conford, E. (1974). Effects of insulin on Schistosomatium douthitti. General and Comparative Endocrinology 23, 286293.CrossRefGoogle Scholar
Dissous, C., Khayath, N., Vicogne, J. and Capron, M. (2006). Growth factor receptor in helminth parasites: signalling and host-parasite relationships. FEBS Letters 580, 29682975.CrossRefGoogle ScholarPubMed
Fernandez, R., Tabarini, D., Azpiazu, N., Frasch, M. and Schlessinger, J. (1995). The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO Journal 14, 33733384.CrossRefGoogle ScholarPubMed
Gish, W. and States, D. J. (1993). Identification of protein coding regions by database similarity search. Nature Genetics 3, 266272.CrossRefGoogle ScholarPubMed
Gomes, C. M. C., Goto, H., Ribeiro Da Matta, V. L., Laurenti, M. D., Gidlund, M. and Corbett, C. E. (2000). Insulin-like growth factor (IGF)-1 affects parasite growth and host cell migration in experimental cutaneous leishmaniasis. International Journal of Experimental Pathology 81, 249255.CrossRefGoogle ScholarPubMed
Goto, H., Gomes, C. M. C., Corbett, C. E. P., Monteiro, H. P. and Gidlund, M. (1998). Insulin-like growth factor I is a growth-promoting factor for Leishmania promastigotes and amastigotes. Proceedings of the National Academy of Sciences, USA 95, 1321113216.CrossRefGoogle ScholarPubMed
Hanks, S. K. and Hunter, T. (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB 9, 576596.CrossRefGoogle ScholarPubMed
Hubbard, S. R., Mohammadi, M. and Schlessinger, J. (1998). Autoregulatory mechanisms in protein-tyrosine kinases. The Journal of Biological Chemistry 273, 1198711990.CrossRefGoogle ScholarPubMed
Khayath, N., Vicogne, J., Ahier, A., Benyounes, A., Konrad, C., Trolet, J., Viscogliosi, E., Brehm, K. and Dissous, C. (2007). Diversification of the insulin receptor family in the helminth parasite Schistosoma mansoni. FEBS Journal 274, 659676.CrossRefGoogle ScholarPubMed
Kido, Y., Nakae, J. and Accili, D. (2001). The insulin receptor and its cellular targets. The Journal of Clinical Endocrinology Metabolism 86, 972979.Google ScholarPubMed
Kimura, K. D., Tissembaum, H. A., Liu, Y. and Ruvkun, G. (1997). Daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942946.CrossRefGoogle ScholarPubMed
Kohn, A. D., Summers, S. A., Birnbaum, M. J. and Roth, R. A. (1996). Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. The Journal of Biological Chemistry 271, 31372–21378.CrossRefGoogle ScholarPubMed
Konrad, C., Kroner, A., Spiliotis, M., Zavala-Góngora, R. and Brehm, K. (2003). Identification and molecular characterization of a gene encoding a member of the insulin receptor family in Echinococcus multilocularis. International Journal of Parasitology 33, 301312.CrossRefGoogle ScholarPubMed
Levi-Schaffer, F. and Smolarsky, M. (1981). Schistosoma mansoni: effect of insulin and a low- molecular-weight fraction of serum on schistosomula in chemically defined media. Experimental Parasitology 52, 378385.CrossRefGoogle Scholar
Luján, H.-D., Mowatt, M. R., Helman, L. J. and Nash, T. E. (1994). Insulin-like growth factors stimulate growth and L-cysteine uptake by the intestinal parasite Giardia lamblia. The Journal of Biological Chemistry 269, 1306913072.CrossRefGoogle ScholarPubMed
Mackintosh, D., Coleman, K. and Davies, A. J. (2003). Mitogenic activity of insulin in the culture of a trypanosome: duration and dose response. Cell Biology International 27, 7578.CrossRefGoogle ScholarPubMed
Nijhout, H. F. (2003). The control of growth. Development 130, 58635867.CrossRefGoogle ScholarPubMed
Oldham, S. and Hafen, E. (2003). Insulin/IGF and target of rapamicyn signaling: a TOR de force in growth control. Trends in Cell Biology 13, 7985.CrossRefGoogle Scholar
Smith, J. D. (1990). In Vitro Culture of Parasites Helminths. CRC Press Florida, USA.Google Scholar
Tamemoto, H., Kadowaki, T., Tobe, K., Yagi, T., Sakura, H., Hayakawa, T., Terauchi, Y., Ueki, K., Kaburagi, Y., Satoh, S., Sekihara, H., Yoshioka, S., Horikoshi, H., Furuta, Y., Ikawa, Y., Kasuga, M., Yazaki, Y. and Azawa, S. (1994). Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182186.CrossRefGoogle ScholarPubMed
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 48764882.CrossRefGoogle Scholar
Ueki, K., Yamamoto-Honda, R., Kaburagi, Y., Yamauchi, T., Tobe, K., Burgering, B. M., Coffer, P. J., Komuro, I., Akanuma, Y., Yazaki, Y. and Kadowaki, T. (1998). Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis and protein synthesis. The Journal of Biological Chemistry 273, 53155322.CrossRefGoogle ScholarPubMed
Weinkove, D. and Leevers, S. J. (2000). The genetic control of organ growth: insights from Drosophila. Current Opinion in Genetics and Development 10, 7580.CrossRefGoogle ScholarPubMed
White, M. F. and Kahn, C. R. (1994). The insulin signaling system. The Journal of Biological Chemistry 269, 14.CrossRefGoogle ScholarPubMed