Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T16:50:22.379Z Has data issue: false hasContentIssue false

In vitro isolation of Plasmodium knowlesi merozoites using polycarbonate sieves

Published online by Cambridge University Press:  06 April 2009

E. D. Dennis
Affiliation:
Department of Chemical Pathology, Guy's Hospital Medical School, London, SE1 9RT
G. H. Mitchell
Affiliation:
Department of Chemical Pathology, Guy's Hospital Medical School, London, SE1 9RT
G. A. Butcher
Affiliation:
Department of Chemical Pathology, Guy's Hospital Medical School, London, SE1 9RT
S. Cohen
Affiliation:
Department of Chemical Pathology, Guy's Hospital Medical School, London, SE1 9RT

Extract

A culture chamber fitted with a polycarbonate sieve has been used to isolate Plasmodium knowlesi merozoites as they are released from schizonts. A 3 μm pore-size sieve allows passage of normal erythrocytes and red cells containing rings and trophozoites and can be used to concentrate schizonts from a mixed cell population. A 2 μm pore-size sieve retains normal and parasitized cells and provides uncontaminated merozoites in high yield (5 × 1010 merozoites per ml schizonts). Merozoite viability diminishes rapidly during 30 min after isolation. These preparations should prove valuable for studies of the biochemical, physiological and antigenic properties of this transient extracellular phase of the malaria parasite.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bannister, L. H., Butcher, G. A., Dennis, B. D. & Mitchell, G. H. (1975). Structure and invasive behaviour of Plasmodium knowlesi merozoites in vitro. Parasitology 71, 483–91.CrossRefGoogle ScholarPubMed
Butcher, G. A. & Cohen, S. (1972). Antigenic variation and protective immunity in Plasmodium knowlesi malaria. Immunology 23, 503–21.Google ScholarPubMed
Christophers, R. & Fulton, J. D. (1939). Experiments with isolated malaria parasites (Plasmodium knowlesi) free from red cells. Annals of Tropical Medicine and Parasitology 33, 161–70.CrossRefGoogle Scholar
Cohen, S., Butcher, G. A. & Mitchell, G. H. (1974). Mechanisms of immunity to malaria. Bulletin of the World Health Organisation 50, 251–7.Google ScholarPubMed
Dennis, E. D. (1975). In preparation.CrossRefGoogle Scholar
Dvorak, J. A., Miller, L. H., Whitehouse, W. C. & Shiroishi, T. (1975). Invasion of erythrocytes by malaria merozoites. Science 187, 748–50.CrossRefGoogle ScholarPubMed
Gregersen, M. I., Bryant, C. A., Hammerle, W. E., Usami, S. & Chien, S. (1967). Flow characteristics of human erythrocytes through polycarbonate sieves. Science 157, 825–7.CrossRefGoogle ScholarPubMed
Miller, L. H., Usami, S. & Chien, S. (1971). Alteration in rheologic properties of Plasmodium knowlesi-infected red cells. Journal of Clinical Investigations 50, 1451–5.CrossRefGoogle ScholarPubMed
Mitchell, G. H., Butcher, G. A. & Cohen, S. (1973). Isolation of blood-stage merozoites from Plasmodium knowlesi malaria. International Journal for Parasitology 3, 443–5.CrossRefGoogle ScholarPubMed
Mitchell, G. H., Butcher, G. A. & Cohen, S. (1974). A merozoite vaccine effective against Plasmodium knowlesi malaria. Nature, London 252, 311–13.CrossRefGoogle ScholarPubMed
Mitchell, G. H., Butcher, G. A. & Cohen, S. (1975). Merozoite vaccination against Plasmodium knowlesi malaria. Immunology 29, 397.Google ScholarPubMed
Trager, W. (1956). The intracellular position of malarial parasites. Transactions of the Royal Society of Tropical Medicine and Hygiene 50, 419–20.CrossRefGoogle ScholarPubMed