Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:13:01.626Z Has data issue: false hasContentIssue false

In vitro investigation of the efficacy of novel diamidines against Trypanosoma cruzi

Published online by Cambridge University Press:  15 April 2014

B. L. TIMM
Affiliation:
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
P. B. DA SILVA
Affiliation:
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
M. M. BATISTA
Affiliation:
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
A. A. FARAHAT
Affiliation:
Department of Chemistry, Georgia State University, Atlanta, Georgia, USA Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
A. KUMAR
Affiliation:
Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
D. W. BOYKIN
Affiliation:
Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
M. N. C. SOEIRO*
Affiliation:
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
*
* Corresponding author: Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil. E-mail: [email protected]

Summary

Chagas’ disease is a neglected tropical disease caused by Trypanosoma cruzi and constitutes a serious public health problem for Latin America. Its unsatisfactory chemotherapy stimulates the search for novel antiparasitic compounds. Amidines and related compounds exhibit well-known activity towards different microbes including T. cruzi. In this vein, our present aim was to evaluate the biological effect of 10 novel structurally related amidines in vitro against bloodstream and intracellular forms of the parasite as well as their potential toxicity on cardiac cell cultures. Our results show that although active against the extracellular forms, with some of them like DB2247 being 6-fold more effective than benznidazole and displaying very low toxicity (>96 μ m), none presented superior trypanocidal effect against intracellular forms as compared with the reference drug. These results may be due to differences in susceptibility profiles related to distinct uptake/extrusion mechanisms and cellular targets between bloodstream and amastigote forms. The present study adds to the knowledge base for the future design of novel amidines that may provide promising activity against T. cruzi.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batista, D. G. J., Pacheco, M. G. O., Kumar, A., Branowska, D., Ismail, M. A., Hu, L., Boykin, D. W. and Soeiro, M. N. C. (2009). Biological, ultrastructural effect and subcellular localization of aromatic diamidines in Trypanosoma cruzi . Parasitology 21, 19. doi: 10.1017/S0031182009991223.Google Scholar
Batista, D. G. J., Batista, M. M., Oliveira, G. M., Borges, P., Lannes-Vieira, J., Britto, C. C., Junqueira, A., Lima, M. M., Romanha, A. J., Sales Junior, P. A., Stephens, C. E., Boykin, D. B. and Soeiro, M. N. C. (2010). Arylimidamide DB766: a potential chemotherapeutic candidate for Chagas disease treatment. Antimicrobial Agents and Chemotherapy 54, 29402952. doi: 10.1128/AAC.01617-09.Google Scholar
Bouteille, B., Oukem, O., Bisser, S. and Dumas, M. (2003). Treatment perspectives for human African trypanosomiasis. Fundamental and Clinical Pharmacology 17, 171181.Google Scholar
Buckner, F. S., Verlinde, C. L., La Flamme, A. C. and Van Voorhis, W. C. (1996). Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrobial Agents and Chemotherapy 40, 25922597.CrossRefGoogle ScholarPubMed
De Castro, S. L., Batista, D. G., Batista, M. M., Batista, W., Daliry, A., De Souza, E. M., Menna-Barreto, R. F. S., Oliveira, G. M., Salomão, K., Silva, C. F., Silva, P. B. and Soeiro, M. N. C. (2011) Experimental chemotherapy for Chagas disease: a morphological, biochemical, and proteomic overview of potential Trypanosoma cruzi targets of amidines derivatives and naphthoquinones. Molecular Biology International ID 306928. Special Issue Target Identification and Intervention Strategies against Kinetoplastid Protozoan Parasites.Google Scholar
De Souza, E. M., Silva, P. B., Nefertiti, A. S., Ismail, M. A., Arafa, R. K., Tao, B., Nixon-Smith, C. K., Boykin, D. W. and Soeiro, M. N. C. (2011). Trypanocidal activity and selectivity in vitro of aromatic amidine compounds upon bloodstream and intracellular forms of Trypanosoma cruzi . Experimental Parasitology 127, 429435. doi: 10.1016/j.exppara.2010.10.010.CrossRefGoogle ScholarPubMed
Don, R. and Ioset, J. R. (2013). Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections. Parasitology 28, 17.Google Scholar
Henriques-Pons, A. and Gomes, M. P. V. F. (2013). Targeting T cells to treat Trypanosoma cruzi-induced myocarditis. In Diagnosis and Treatment of Myocarditis (ed. Milei, J. and Ambrosio, G.), pp. 4764. InTech. www.intechopen.com Google Scholar
Ismail, M. A., Arafa, R. K., Wenzler, T., Brun, R., Tanious, F. A., Wilson, W. D. and Boykin, D. W. (2008). Synthesis and antiprotozoal activity of novel bis-benzamidino imidazo[1,2-a]pyridines and 5,6,7,8-tetrahydro-imidazo[1,2-a]pyridines. Bioorganic and Medicinal Chemistry 16, 683691.Google Scholar
Liu, Y., Chai, Y., Kumar, A., Tidwell, R. R., Boykin, D. W. and Wilson, W. D. (2012). Designed compounds for recognition of 10 base pairs of DNA with two at binding sites. Journal of the American Chemical Society 134, 52905299. doi: 10.1021/ja211628j.Google Scholar
Meirelles, M. N. L., Araujo-Jorge, T. C., Miranda, C. F., De Souza, W. and Barbosa, H. S. (1986). Interaction of Trypanosoma cruzi with heart muscle cells: ultrastructural and cytochemical analysis of endocytic vacuole formation and effect upon myogenesis in vitro . European Journal of Cell Biology 41, 198206.Google Scholar
Nyunt, M. M., Hendrix, C. W., Bakshi, R. P., Kumar, N. and Shapiro, T. A. (2009). Phase I/II evaluation of the prophylactic antimalarial activity of pafuramidine in healthy volunteers challenged with Plasmodium falciparum sporozoites. American Journal of Tropical Medicine and Hygiene 80, 528535.CrossRefGoogle ScholarPubMed
Pacheco, M. G. O., Silva, C. F., De Souza, E. M., Batista, M. M., Silva, P. B., Kumar, A., Stephens, C. E., Boykin, D. W. and Soeiro, M. N. C. (2009). Activity of heterocyclic cationic molecules against Trypanosoma cruzi in vitro . Experimental Parasitology 123, 7380. doi: 10.1016/j.exppara.2009.06.004.Google Scholar
Romanha, A. J., De Castro, S. L., Soeiro, M. N. C., Lannes-Vieira, J., Ribeiro, I., Talvani, A., Bourdin, B., Blum, B., Olivieri, B., Zani, C., Spadafora, C., Chiari, E., Chatelain, E., Chaves, G., Calzada, J. E., Bustamante, J. M., Freitas-Junior, L. H., Romero, L. I., Bahia, M. T., Lotrowska, M., Soares, M., Andrade, S. G., Armstrong, T., Degrave, W. and Andrade, Z. A. (2010). In vitro and in vivo experimental models for drug screening and development for Chagas disease. Memórias do Instituto Oswaldo Cruz 105, 233238.Google Scholar
Silva, C. F., Batista, M. M., Mota, R. A., De Souza, E. M., Stephens, C. E., Som, P., Boykin, D. W. and Soeiro, M. N. C. (2007). Activity of ‘reversed’ diamidines against Trypanosoma cruzi in vitro . Biochemical Pharmacology 73, 19391946.Google Scholar
Silva, C. F., Daliry, A., Da Silva, P. B., Akay, S., Banerjee, M., Farahat, A. A., Fisher, M. K., Hu, L., Kumar, A., Liu, Z., Stephens, C. E., Boykin, D. W. and Soeiro, M. N. C. (2011). The efficacy of novel arylimidamides against Trypanosoma cruzi in vitro . Parasitology 138, 18631869. doi: 10.1017/S0031182011001429.Google Scholar
Silva, C. F., Batista, D. G., Oliveira, G. M., De Souza, E. M., Hammer, E. R., Silva, P. B., Daliry, A., Araujo, J. S., Britto, C., Rodrigues, A. C., Liu, Z., Farahat, A. A., Kumar, A., Boykin, D. W. and Soeiro, M. N. C. (2012). In vitro and in vivo investigation of the efficacy of arylimidamide DB1831 and its mesylated salt form – DB1965- against Trypanosoma cruzi infection. PLoS One 7, e30356. doi: 10.1371/journal.pone.0030356.Google Scholar
Soeiro, M. N. C. and De Castro, S. L. (2009). Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opinion on Therapeutic Targets 13, 105121. doi: 10.1517/14728220802623881.Google Scholar
Soeiro, M. N. C., Werbovetz, K., Boykin, D. W., Wilson, W. D., Wang, M. Z. and Hemphill, A. (2013). Novel amidines and analogues as promising agents against intracellular parasites: a systematic review. Parasitology 140, 929951. doi: 10.1017/S0031182013000292.Google Scholar
Wilson, W. D., Tanious, F. A., Mathis, A., Tevis, D., Hall, J. E. and Boykin, D. W. (2008). Antiparasitic compounds that target DNA. Biochimie 90, 9991014. doi: 10.1016/j.biochi.2008.02.017.Google Scholar