Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T07:55:16.844Z Has data issue: false hasContentIssue false

In vitro efficacy of essential oils and extracts of Schinus molle L. against Ctenocephalides felis felis.

Published online by Cambridge University Press:  18 February 2016

LILIAN C. DE S. O. BATISTA
Affiliation:
Department of Veterinary Parasitology, Federal Rural University of Rio de Janeiro, CEP 23897-000, Seropédica, Rio de Janeiro, Brazil
YARA P. CID
Affiliation:
Department of Veterinary Parasitology, Federal Rural University of Rio de Janeiro, CEP 23897-000, Seropédica, Rio de Janeiro, Brazil
ANA PAULA DE ALMEIDA
Affiliation:
Laboratório de Estudo Químico e Farmacológico de Produtos Naturais e Derivados LAEQUIFAR-PD, Universidade Severino Sombra (USS), Rio de Janeiro, Brazil
EDLENE R. PRUDÊNCIO
Affiliation:
Department of Chemistry, Federal Rural University of Rio de Janeiro, CEP 23897-000, Seropédica, Rio de Janeiro, Brazil
CRISTIANO J. RIGER
Affiliation:
Department of Chemistry, Federal Rural University of Rio de Janeiro, CEP 23897-000, Seropédica, Rio de Janeiro, Brazil
MARCO A. A. DE SOUZA
Affiliation:
Department of Chemistry, Federal Rural University of Rio de Janeiro, CEP 23897-000, Seropédica, Rio de Janeiro, Brazil
KATHERINE COUMENDOUROS
Affiliation:
Department of Veterinary Parasitology, Federal Rural University of Rio de Janeiro, CEP 23897-000, Seropédica, Rio de Janeiro, Brazil
DOUGLAS S. A. CHAVES*
Affiliation:
Department of Pharmaceutical Science, Federal Rural University of Rio de Janeiro, CEP 23897-000, Seropédica, Rio de Janeiro, Brazil
*
* Corresponding author. Departamento de Ciências Farmacêuticas (DCFar) – Laboratório de Química de Bioativos Naturais (LQBioN), Universidade Federal Rural do Rio de Janeiro, Instituto de Ciências Biológicas e da Saúde, Br 465, Km 7/sala 33, 23897-000 – Seropédica, Rio de Janeiro, Brazil. Tel./Fax: +55-21-2682-2807. E-mail: [email protected]; [email protected]

Summary

Extracts and essential oils from plants are important natural sources of pesticides. These compounds are considered an alternative to control ectoparasites of veterinary importance. Schinus molle, an endemic species of Brazil, produces a high level of essential oil and several other compounds. The aim of this work was to determinate the chemical composition of extracts and essential oils of S. molle and further to evaluate the activity against eggs and adults of Ctenocephalides felis felis, a predominant flea that infests dogs and cats in Brazil. In an in vitro assay, the non-polar (n-hexane) extract showed 100% efficacy (800 µg cm−2; LD50 = 524·80 µg cm−2) at 24 and 48 h. Its major compound was lupenone (50·25%). Essential oils from fruits and leaves were evaluated, and had 100% efficacy against adult fleas at 800 µg cm−2 (LD50 = 353·95 µg cm−2) and at 50 µg cm−2 (LD50 = 12·02 µg cm−2), respectively. On the other hand, the essential oil from fruits and leaves was not active against flea eggs. This is the first study that reports the insecticidal effects of essential oils and extracts obtained from Schinus molle against Ctenocephalides felis felis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel-Sattar, E., Zaitoun, A. A., Farag, M. A., Gayed, S. H. and Harraz, F. M. (2010). Chemical composition, insecticidal and insect repellent activity of Schinus molle L. leaf and fruit essential oils against Trogoderma granarium and Tribolium castaneum . Natural Products Research 24, 226235.CrossRefGoogle Scholar
Abbott, W. S. (1987). A method of computing the effectiveness of an insecticide. Journal of the American Mosquito Control Association 3, 302303.Google ScholarPubMed
Adams, R. P. (1995). Identification of Essential Oil Components by Gas Chromatography-Mass Spectroscopy. Corp., Carol Stream, USA.Google Scholar
Addie, D. D., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Horzinek, K. C., Hosie, M. J., Lloret, A., Lutz, H., Marsilio, F., Pennisi, M. G., Radford, A. D., Thiry, E., Truyen, U. and Möstl, K. (2015). Disinfectant choices in veterinary practices, shelters and households ABCD guidelines on safe and effective disinfection for feline environments. Journal of Feline Medicine and Surgery 17, 594605.CrossRefGoogle ScholarPubMed
Akinneye, J. O., Adedire, C. O. and Arannilewa, S. T. (2006). Potential of Cleisthopholis patens Elliot as a maize protectant against the stored product moth, Plodia. Interpunctella (Hubner) (Lepidoptera; Pyralidae). African Journal of Biotechnology 5, 25102515.Google Scholar
Baldin, E. L. L., Pereira, J. M., Dal Pogetto, M. H. F. A., Christovam, R. S. and Caetano, A. C. (2008). Efeitos de pós vegetais sobre “Zabrotes subfasciatus” Bohemann (Coleoptera: Bruchidae) em grãos de feijão armazenado. Boletin de Sanidad Vegetal de Plagas 34, 177185.Google Scholar
Baldin, E. L. L., Prado, J. P. M., Christovam, R. S. and Dal Pogetto, M. H. F. A. (2009). Uso de pós de origem vegetal no controle de Acanthoscelides obtectus Say (Coleoptera: Bruchidae) em grãos de feijoeiro. BioAssay 4, 16.CrossRefGoogle Scholar
Barroso, M. S. T., Villanueva, G., Lucas, A. M., Perez, G. P. and Vargas, R. M. F. (2011). Supercritical fluid extraction of volatile and non-volatile compounds from Schinus molle L.. Brazilian Journal of Chemical Engineering 28, 305312.CrossRefGoogle Scholar
Batista, L. C. S. O., Vieira, V. P. C., Correia, T. T., Santos, E. C. F., Fazio-Junior, P. I., Florencio, C. N., Carneiro, M. B., Scott, F. B. and Coumendouros, K. (2012). Eficácia in vitro de uma formulação aerossol de piriproxifen e ciflutrina no controle de Ctenocephalides felis felis (Bouché, 1835) (Siphonaptera: Pulicidae). Revista Brasileira de Medicina Veterinária 34(Suppl. 1), 4145.Google Scholar
Batista, L. C. S. O., Cid, Y. P., Magalhaes, V. S., Chaves, D. S. A. and Coumendouros, K. (2014). Bioprospecção de extratos de jaborandi contra Ctenocephalides felis felis, Rhipicephalus sanguineus e Rhipicephalus microplus . Revista Brasileira de Medicina Veterinária 35, 113118.Google Scholar
Benzi, V. S., Stefanazzi, N. and Ferrero, A. A. (2009). Biological activity of essential oils from leaves and fruits of pepper tree (Schinus molle L.) to control rice weevil (Sitophilus oryzae L.). Chilean Journal of Agricultural Research 69, 154159.CrossRefGoogle Scholar
Bitam, I., Dittmar, K., Parola, P., Whiting, M. F. and Raoult, D. (2010). Fleas and flea-borne diseases. International Journal of Infectious Diseases 14, e667e676.CrossRefGoogle ScholarPubMed
Blagburn, B. L. and Dryden, M. W. (2009). Biology, treatment, and control of flea and tick infestations. Veterinary Clinics of North America: Small Animal Practice 39, 11731200.CrossRefGoogle ScholarPubMed
Bousbia, N., Vian, M. A., Ferhat, M. A., Petitcolas, E., Meklati, B. Y. and Chemat, F. (2009). Comparison of two isolation methods for essential oil from rosemary leaves: Hydrodistillation and microwave hydrodiffusion and gravity. Food Chemistry 114, 355362.CrossRefGoogle Scholar
Carneiro, A. P., Pereira, M. J. B. and Galbiati, C. (2011). Efeito biocida de Annonacoriacea Mart 1841 sobre ovos e ninfas do vetor Rhodnius neglectus Lent 1954. Neotropical Biology and Conservation 6, 131136.CrossRefGoogle Scholar
Carvalho, M. G., Melo, A. G. N., Aragão, C. F. S., Raffin, F. N. and Moura, T. F. A. L. (2013). Schinus terebinthifolius Raddi: chemical composition, biological properties and toxicity. Revista Brasileira de Plantas Mediciais 15, 158169.CrossRefGoogle Scholar
Castro, F. A., Mariani, D., Panek, A. D., Eleutherio, E. C. A. and Pereira, M. D. (2008). Cytotoxicity mechanism of two naphthoquinones (menadione and plumbagin) in Saccharomyces cerevisiae . PLoS ONE 3, e3999.CrossRefGoogle ScholarPubMed
Cavalcanti, A. S., Alves, M. S., da Silva, L. C. P., Patrocínio, D. S., Sanches, M. N., Chaves, D. S. A. and Souza, M. A. A. (2015). Volatiles composition and extraction kinetics from Schinus terebinthifolius and Schinus molle leaves and fruit. Brazilian Journal of Pharmacognosy 25, 356362. http://dx.doi.org/10.1016/j.bjp.2015.07.003 CrossRefGoogle Scholar
Chopa, C. S., Alzogaray, R. and Ferrero, A. (2006). Repellency assays with Schinus molle var. areira (L.) (Anacardiaceae) Essential oils against Blattella germanica L. (Blattodea: Blattellidae). BioAssay 1, 13.Google Scholar
Cole, L. M., Nicholson, R. A. and Casida, J. E. (1993). Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pesticide Biochemistry and Physiology 46, 4754.CrossRefGoogle Scholar
Coles, T. B. and Dryden, M. W. (2014). Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasites & Vectors 7, 110.CrossRefGoogle ScholarPubMed
Dayan, F. E., Cantrell, C. L. and Duke, S. O. (2009). Natural products in crop protection. Bioorganic & Medicinal Chemistry 17, 40224034.CrossRefGoogle ScholarPubMed
Di Stasi, L. C. and Hiruma-Lima, C. A. (2002). Plantas Medicinais na Amazônia e na Mata Atlântica, 2nd Edn. Editora UNESP, São Paulo, 604p.Google Scholar
Dryden, M. W., Payne, P. A., Smith, V., Heaney, K. and Sun, F. (2013). Efficacy of indoxacarb applied to cats against the adult cat flea, Ctenocephalides felis, flea eggs and adult flea emergence. Parasites & Vectors 6, 16.CrossRefGoogle ScholarPubMed
Downer, J. A., Svihra, P., Molinar, R. H., Fraser, J. B. and Koehler, C. S. (1988). New psyllid pest of California pepper tree. California Agriculture 42, 3031.Google Scholar
Ellse, L. and Wall, R. (2013). The use of essential oils in veterinary ectoparasite control: a review. Medical and Veterinary Entomology 28, 233243.CrossRefGoogle ScholarPubMed
Ferrero, A. A., Werdin Gonzalez, J. O. and Sanchez Chopa, C. (2006). Biological activity of Schinus molle on Triatoma infestans . Fitoterapia 77, 381383.CrossRefGoogle ScholarPubMed
Fourie, J. J., Fourie, L. J. and Horak, I. G. (2005). Efficacy of orally administered powdered aloe juice (Aloe ferox) against ticks on cattle and ticks and fleas on dogs. Journal of the South African Veterinary Association 76, 193196.CrossRefGoogle ScholarPubMed
Graf, J. F. (1993). The role of insect growth regulators in arthropod control. Parasitology Today 9, 471474.CrossRefGoogle ScholarPubMed
Gehrke, I. T. S., Neto, A. T., Pedroso, M., Mostardeiro, C. P., Da Cruz, I. B. M., Silva, U. F., Ilha, V., Dalcol, I. I. and Morel, A. F. (2013). Antimicrobial activity of Schinus lentiscifolius (Anacardiaceae). Journal of Ethnopharmacology 148, 486491.CrossRefGoogle ScholarPubMed
Genovese, A. G., McLean, M. K. and Khan, S. A. (2012). Adverse reactions from essential oil-containing natural flea products exempted from Environmental Protection Agency regulations in dogs and cats. Journal of Veterinary Emergency and Critical Care (San Antonio) 22, 470475.CrossRefGoogle ScholarPubMed
Gomes, V., Agostini, G., Agostini, F., Atti dos Santos, A. C. and Rossato, M. (2013). Variation in the essential oils composition in Brazilian populations of Schinus molle L. (Anacardiaceae). Biochemical Systematics and Ecology 48, 222227.CrossRefGoogle Scholar
Homa, M., Fekete, I. P., Böszörményi, A., Singh, Y. R. B., Selvam, K. P., Shobana, C. S., Manikandan, P., Kredics, L., Vágvölgyi, C. and Galgóczy, L. (2015). Antifungal effect of essential oils against Fusarium keratitis isolates. Planta Medica 81, 12771284.Google ScholarPubMed
Ibrahim, B. and Al-Naser, Z. (2014). Analysis of fruits Schinus molle extractions and the efficacy in inhibition of growth the fungi in laboratory. International Journal of ChemTech Research 6, 27992806.Google Scholar
Ibrahim, M., Kainulainen, P., Aflatuni, A., Tiilikkala, K. and Holopainen, J. K. (2001). Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: with special reference to limonene and its suitability for control of insect pests. Agricultural and Food Science in Finland 10, 243259.CrossRefGoogle Scholar
Jerković, I., Mastelić, J. and Miloš, M. (2001). The impact of both the season of collection and drying on the volatile constituents of Origanum vulgare L. ssp. hirtum grown wild in Croatia. International Journal of Food Science & Technology 36, 649654.CrossRefGoogle Scholar
Jin, T., Lu, J. and Nordberg, M. (1998). Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology 19, 529535.Google ScholarPubMed
Khurana, V. and Lindquist, S. (2011). Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker's yeast? Nature Reviews Neuroscience 11, 436449.CrossRefGoogle Scholar
Lans, C., Turner, N. and Khan, T. (2008). Medicinal plant treatments for fleas and ear problems of cats and dogs in British Columbia, Canada. Parasitology Research 103, 889898.CrossRefGoogle ScholarPubMed
Lima, H. R., Kaplan, M. A. C. and Cruz, A. V. M. (2003). Influencia dos fatores abióticos na produção e variabilidade de terpenóides em plantas. Floresta e Ambiente 10, 7177.Google Scholar
Marongiu, B., Porcedda, A. P. S., Casu, R. and Pierucci, P. (2004). Chemical composition of the oil and supercritical CO2 extract of Schinus molle L.. Flavour and Fragrance Journal 19, 554558.CrossRefGoogle Scholar
Martins, M. R., Arantes, S., Candeias, F., Tinoco, M. T. and Cruz-Morais, J. (2014). Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils. Journal of Ethnopharmacology 151, 485492.CrossRefGoogle ScholarPubMed
Masateru, O. N. O., Yamashita, M., Mori, K., Masuoka, C., Eto, M., Kinj, J., Ikeda, T., Yoshimitsu, H. and Nohara, T. (2008). Sesquiterpenoids, Triterpenoids, and flavonoids from the fruits of Schinus molle . Food Science and Technology Research 14, 499508.Google Scholar
Mertz, F. and Raymond, C. Y. (1990). Saccharopolyspora spinosa sp. nov. Isolated from soil Collected in a Sugar Mill Rum Still”. International Journal of Systematic Bacteriology 40, 3439.CrossRefGoogle Scholar
Murray, A. P., Frontera, M. A., Tomas, M. A. and Mulet, M. C. (2005). Gas chromatography-mass spectrometry study of the essential oils of Schinus longifolia (Lindl.) Speg., Schinus fasciculata(Griseb.) I. M. Johnst., and Schinus areira L. Zeitschrift für Naturforschung 60, 2529. PMID: 15787239.CrossRefGoogle Scholar
Narahashi, T., Zhao, X., Ikeda, T., Salgado, V. L. and Yeh, J. Z. (2010). Glutamate-activated chloride channels: unique fipronil targets present in insects but not in mammals. Pesticide Biochemistry Physiology 97, 149152.CrossRefGoogle Scholar
Raja, M. and John William, J. (2008). Impact of volatile oils of plants against the Cowpea Beetle Callosobruchus maculates (FAB) (Coleoptera: Bruchidae). International Journal of Integrative Biology 2, 6264.Google Scholar
Rauh, J. J., Lummis, S. C. R. and Sattelle, D. B. (1990). Pharmacological and biochemical properties of insect GABA receptors. Trends in Pharmacological Science 11, 325329.CrossRefGoogle ScholarPubMed
Ribeiro, T. P., Fernandes, C., Melo, K. V., Ferreira, S. S., Lessa, J. A., Franco, R. W. A., Schenk, G., Pereira, M. D. and Horn, A. Jr. (2015). Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress. Free Radical Biology and Medicine 80, 6776.CrossRefGoogle ScholarPubMed
Rust, M. K. (2005). Advances in the control of Ctenocephalides felis (cat flea) on cats and dogs. Trends in Parasitology 21, 232236.CrossRefGoogle ScholarPubMed
Sangwan, N. S., Farooqi, A. H. A., Shabih, F. and Sangwan, R. S. (2001). Regulation of essential oil production in plants. Plant Growth Regulation 34, 321.CrossRefGoogle Scholar
Scopel, R., Neto, R. G., Falcão, M. A., Cassel, E. and Vargas, R. M. F. (2013). Supercritical CO2 extraction of Schinus molle L with co-solvents: mathematical modeling and antimicrobial applications. Brazilian Archives of Biology and Technology 56, 513519.CrossRefGoogle Scholar
Shojaaddini, M., Moharramipour, S. and Sahaf, B. Z. (2008). Fumigant toxicity of essential oil from Carumcopticum against Indian meal moth, Plodia interpunctella . Journal of Plant Protection Research 48, 411419.CrossRefGoogle Scholar
Silva, C. G., Herdeiro, R. S., Mathias, C. J., Panek, A. D., Silveira, C. S., Rodrigues, V. P., Renno, M. N., Falcao, D. Q., Cerqueira, D. M., Minto, A. B., Nogueira, F. L., Quaresma, C. H., Silva, J. F., Menezes, F. S. and Eleutherio, E. C. A. (2005). Evaluation of antioxidant activity of Brazilian plants. Pharmacological Research 52, 229233.CrossRefGoogle ScholarPubMed
Silva-Luz, C. L. and Pirani, J. R. (2014). Anacardiaceae in Lista de Espécies da Flora do Brasil. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB4398. Jardim Botânico do Rio de Janeiro.Google Scholar
Sousa, F. C. F., Melo, C. T. V., Citó, M. C. O., Félix, F. H. C., Vasconcelos, S. M. M., Fonteles, M. M. F., Filho, J. M. B. and Viana, G. S. B. (2008). Medicinal plants and their bioactive constituents: a scientific review of bioactivity and potential benefits in the anxiety disorders in animal models. Brazilian Journal of Pharmacognosy 18, 642654.CrossRefGoogle Scholar
Souza, M. C. C. and Trovão, D. M. B. M. (2009). Bioatividade do extrato seco de plantas da caatinga e do Nim (Azadiractha indica) sobre Sitophilus zeamais Mots em milho armazenado. Revista Verde de Agroecologia e Desenvolvimento Sustentável 4, 120124.Google Scholar
Souza-Moreira, T. M., Salgado, H. R. N. and Pietro, R. C. L. R. (2010). Brazil in the context of plants and derivates quality control. Brazilian Journal of Pharmacognosy 20, 435440.CrossRefGoogle Scholar
Sparagano, O., Khallaayoune, K., Duvallet, G., Nayak, S. and George, D. (2013). Comparing terpenes from plant essential oils as pesticides for the poultry red mite (Dermanyssus gallinae). Transboundary and Emerging Diseases 60(Suppl. 2), 150153.CrossRefGoogle ScholarPubMed
Stamopoulos, D. C., Damos, P. and Karagianidou, G. (2007). Bioactivity of five monoterpenoid vapours to Tribolium confusum (du Val) (Coleoptera: Tenebrionidae). Journal of Stored Products Research 43, 571577.CrossRefGoogle Scholar
Su, L. C., Huang, C. G., Chang, S. T., Yang, S. H., Hsu, S. H., Wu, W. J. and Huang, R. N. (2013). An improved bioassay facilitates the screening of repellents against cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Pest Management Science 70, 264270.CrossRefGoogle ScholarPubMed
Taylor, M. A. (2001). Recent developments in ectoparasiticides. The Veterinary Journal 161, 253268.CrossRefGoogle ScholarPubMed
Van den Dool, H. and Kratz, P. D. (1963). A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography 11, 463471.CrossRefGoogle Scholar
Vattikonda, S. R., Amanchi, N. R. and Sangam, S. R. (2015). Effect of Costunolide a plant product of Saussurea lappa on feeding behaviour of Papilio demoleus L. (Lepidoptera: Papilionidae) Larvae. Research Journal of Recent Sciences 4, 5558.Google Scholar
Yu, D., Wang, J., Shao, X., Xu, F. and Wang, H. (2015). Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea . Journal Applied Microbiology 119, 12531262.CrossRefGoogle ScholarPubMed
Zahed, N., Hosni, K., Brahim, N. B., Kallel, M. and Sebei, H. (2010). Allelopathic effect of Schinus molle essential oils on wheat germination. Acta Physiologiae Plantarum 32, 12211227.CrossRefGoogle Scholar
Zakson-Aiken, M., Gregory, L. M., Meinke, P. T. and Shoop, W. L. (2001). Systemic activity of the avermectins against the cat flea (Siphonaptera: Pulicidae). Journal of Medical Entomology 38, 576580. http://dx.doi.org/10.1603/0022-2585-38.4.576.CrossRefGoogle ScholarPubMed