Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T03:17:21.487Z Has data issue: false hasContentIssue false

Impact of number of isoenzyme loci on the robustness of intraspecific phylogenies using multilocus enzyme electrophoresis: consequences for typing of Trypanosoma cruzi

Published online by Cambridge University Press:  09 October 2003

S. F. BRENIERE
Affiliation:
UR 008: ‘Pathogénie des Trypanosomatidés’ and
C. BARNABE
Affiliation:
UR 062 ‘Génétique des Maladies infectieuses’, Institut de Recherche pour le Développement, 911 Av. Agropolis, BP 64501, 34394 Montpellier Cedex 1, France
M. F. BOSSENO
Affiliation:
UR 008: ‘Pathogénie des Trypanosomatidés’ and
M. TIBAYRENC
Affiliation:
UR 062 ‘Génétique des Maladies infectieuses’, Institut de Recherche pour le Développement, 911 Av. Agropolis, BP 64501, 34394 Montpellier Cedex 1, France

Abstract

Thirty-one stocks of Trypanosoma cruzi, the agent of Chagas disease, representative of the genetic variability of the 2 principal lineages, that subdivide T. cruzi, were selected on the basis of previous multilocus enzyme electrophoresis analysis using 21 loci. Analyses were performed with lower numbers of loci to explore the impact of the number of loci on the robustness of the phylogenies obtained, and to identify the loci that have more impact on the phylogeny. Analyses were performed with numerical (UPGMA) and cladistical (Wagner parsimony analysis) methods for all sets of loci. Robustness of the phylogenies obtained was estimated by bootstrap analysis. Low numbers of randomly selected loci (6) were sufficient to demonstrate genetic heterogeneity among the stocks studied. However, they were unable to give reliable phylogenetic information. A higher number of randomly selected loci (15 and more) were required to reach this goal. All loci did not convey equivalent information. The more variable loci detected a greater genetic heterogeneity among the stocks, whereas the least variable loci were better for robust clustering. Finally, analysis was performed with only 5 and 9 loci bearing synapomorphic allozyme characters previously identified among larger samples of stocks. A set of 9 such loci was able to uncover both genetic heterogeneity among the stocks and to build robust phylogenies. It can therefore be recommended as a minimum set of isoenzyme loci that bring maximal information for all studies aiming to explore the phylogenetic diversity of a new set of T. cruzi stocks and for any preliminary genetic typing. Moreover, our results show that bootstrap analysis, like any statistics, is highly dependent upon the information available and that absolute bootstrap figures should be cautiously interpreted.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AVISE, J. C., NELSON, W. S. & SIBLEY, C. G. (1994). DNA sequence support for a close phylogenetic relationship between some storks and New World vultures. Proceedings of the National Academy of Sciences, USA 91, 51735177.CrossRefGoogle Scholar
BARNABÉ, C., BRISSE, S. & TIBAYRENC, M. (2000). Population structure and genetic typing of Trypanosoma cruzi, the agent of Chagas disease: a multilocus enzyme electrophoresis approach. Parasitology 120, 513526.CrossRefGoogle Scholar
BOGLIOLO, A. R., LAURIA-PIRES, L. & GIBSON, W. C. (1996). Polymorphisms in Trypanosoma cruzi: evidence of genetic recombination. Acta Tropica 61, 3140.CrossRefGoogle Scholar
BRISSE, S., BARNABÉ, C. & TIBAYRENC, M. (2000). Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. International Journal for Parasitology 30, 3544.CrossRefGoogle Scholar
BRISSE, S., BARNABÉ, C., BANULS, A. L., SIDIBE, I., NOEL, S. & TIBAYRENC, M. (1998). A phylogenetic analysis of the Trypanosoma cruzi genome project CL Brener reference strain by multilocus enzyme electrophoresis and multiprimer random amplified polymorphic DNA fingerprinting. Molecular and Biochemical Parasitology 92, 253263.CrossRefGoogle Scholar
CARRASCO, H. J., FRAME, I. A., VALENTE, S. A. & MILES, M. A. (1996). Genetic exchange as a possible source of genomic diversity in sylvatic populations of Trypanosoma cruzi. American Journal of Tropical Medicine and Hygiene 54, 418424.CrossRefGoogle Scholar
FELSENSTEIN, J. (1985). Confidence limits on phylogenies: an approach using bootstrap. Evolution 39, 783791.CrossRefGoogle Scholar
FELSENSTEIN, J. (1993). PHYLIP (Phylogenetic Inference Package) 3.5c ed. Seattle, Distributed by the author. Department of Genetics, University of Washington.
HENRIKSSON, J., DUJARDIN, J. C., BARNABÉ, C., BRISSE, S., TIMPERMAN, G., VENEGAS, J., PETTERSSON, U., TIBAYRENC, M. & SOLARI, A. (2002). Chromosomal size variation in Trypanosoma cruzi is mainly progressive and is evolutionarily informative. Parasitology 124, 277286.CrossRefGoogle Scholar
JACCARD, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société vaudoise de Sciences Naturelles 44, 223270.Google Scholar
LANAR, D. E., LEVY, L. S. & MANNING, J. E. (1981). Complexity and content of the DNA and RNA in Trypanosoma cruzi. Molecular and Biochemical Parasitology 3, 327341.CrossRefGoogle Scholar
LEWICKA, K., BRENIERE-CAMPANA, S. F., BARNABÉ, C., DEDET, J. P. & TIBAYRENC, M. (1995). An isoenzyme survey of Trypanosoma cruzi genetic variability in sylvatic cycles from French Guiana. Experimental Parasitology 81, 2028.CrossRefGoogle Scholar
MACHADO, C. A. & AYALA, F. J. (2001). Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proceedings of the National Academy of Sciences, USA 98, 73967401.CrossRefGoogle Scholar
MILES, M. A., SOUZA, A., POVOA, M., SHAW, J. J., LAINSON, R. & TOYÉ, P. J. (1978). Isozymic heterogeneity of Trypanosoma cruzi in the first autochthonous patients with Chagas' disease in Amazonian Brazil. Nature, London 272, 819821.CrossRefGoogle Scholar
MOMEN, H. (1999). Taxonomy of Trypanosoma cruzi: a commentary on characterization and nomenclature. Memorias do Instituto Oswaldo Cruz 94 (Suppl 1), S181S184.CrossRefGoogle Scholar
OLIVEIRA, R. P., BROUDE, N. E., MACEDO, A. M., CANTOR, C. R., SMITH, C. L. & PENA, S. D. (1998). Probing the genetic population structure of Trypanosoma cruzi with polymorphic microsatellites. Proceedings of the National Academy of Sciences, USA 95, 37763780.CrossRefGoogle Scholar
SNEATH, P. H. A. & SOKAL, R. R. (1973). Numerical Taxonomy. The Principle and Practice of Numerical Classification. Freeman, San Francisco.
SOUTO, R. P., FERNANDES, O., MACEDO, A. M., CAMPBELL, D. A. & ZINGALES, B. (1996). DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Molecular and Biochemical Parasitology 83, 141152.CrossRefGoogle Scholar
TIBAYRENC, M. (1995). Population genetics of parasitic protozoa and other microorganisms. Advances in Parasitology 36, 47115.CrossRefGoogle Scholar
TIBAYRENC, M. (1999). Toward an integrated genetic epidemiology of parasitic protozoa and other pathogens. Annual Review of Genetics 33, 449477.CrossRefGoogle Scholar
TIBAYRENC, M., CARIOU, M. L. & SOLIGNAC, M. (1981). Genetic interpretation of flagellate zymograms of the genera Trypanosoma and Leishmania. Comptes Rendus de l'Académie des Sciences 292, 623625.Google Scholar
TIBAYRENC, M., WARD, P., MOYA, A. & AYALA, F. J. (1986). Natural populations of Trypanosoma cruzi, the agent of Chagas disease, have a complex multiclonal structure. Proceedings of the National Academy of Sciences, USA 83, 115119.CrossRefGoogle Scholar
TOYÉ, P. J. (1974). Isoenzyme variation in isolates of Trypanosoma cruzi. Transactions of the Royal Society of Tropical Medicine and Hygiene 68, 147.Google Scholar
WHITTAM, T. S. (1989). Clonal dynamics of Escherichia coli in its natural habitat. Antonie Van Leeuwenhoek 55, 2332.CrossRefGoogle Scholar