Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T22:57:06.407Z Has data issue: false hasContentIssue false

Immunolocalization and characterization of the low molecular weight antigen (4–5 kDa) of Toxoplasma gondii that elicits an early IgM response upon primary infection

Published online by Cambridge University Press:  06 April 2009

S. Tomavo
Affiliation:
U.42, Institut National de la Santé et de la Recherche Médicate, 59650 Villeneuve d' Ascq, France
G. Couvreur
Affiliation:
U.42, Institut National de la Santé et de la Recherche Médicate, 59650 Villeneuve d' Ascq, France
M. A. Leriche
Affiliation:
U.42, Institut National de la Santé et de la Recherche Médicate, 59650 Villeneuve d' Ascq, France
A. Sadak
Affiliation:
U.42, Institut National de la Santé et de la Recherche Médicate, 59650 Villeneuve d' Ascq, France
A. Achbarou
Affiliation:
U.42, Institut National de la Santé et de la Recherche Médicate, 59650 Villeneuve d' Ascq, France
B. Fortier
Affiliation:
U.42, Institut National de la Santé et de la Recherche Médicate, 59650 Villeneuve d' Ascq, France
F. Dubremetz
Affiliation:
U.42, Institut National de la Santé et de la Recherche Médicate, 59650 Villeneuve d' Ascq, France

Summary

A striking feature of toxoplasmic seroconversion is the prominent and early IgM response to a low molecular weight antigen of 4–5 kDa. Two different monoclonal antibodies directed against the 4–5 kDa antigen have been generated and used to characterize this molecule. Using these monoclonal antibodies, we could demonstrate the surface localization of the low Mr antigen by immunofluorescence and immuno-electron microscopy assays. By immunoblotting, we observed that one of the monoclonal antibodies was unable to recognize the 4–5 kDa antigen in tachyzoites propagated in cell culture, indicating an epitope variability between Toxoplasma gondii tachyzoites grown in vivo and in vitro. We discuss the implications of this latter finding in the design of diagnostic reagents.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Couvreur, G., Sadak, A., Fortier, B. & Dubremetz, J. F. (1988). Surface antigens of Toxoplasma gondii. Parasitology 97, 110.CrossRefGoogle ScholarPubMed
Couzineau, P. & Beaufine-Ducrocq, H. (1969). Étude des possibilityés d'utilisation du sarcome TG 180 de la souris. Application à la toxoplasmose. Annales de Parasitologic Humaine et Comparée 44, 217–22.CrossRefGoogle Scholar
Erlich, H. A., Rodgers, G., Vaillancourt, P., Araujo, F. G. & Remington, J. S. (1983). Identification of an antigen-specific immunoglobulin M antibody associated with acute Toxoplasma infection. Infection and Immunity 41, 683–90.CrossRefGoogle ScholarPubMed
Grimwood, B. G., Hechemy, K. & Stevens, R. W. (1979). Toxoplasma gondii: purification of trophozoites propagated in cell culture. Experimental Parasitology 48, 282–6.CrossRefGoogle ScholarPubMed
Handman, E., Goding, J. W. & Remington, J. S. (1980). Detection and characterization of membrane antigens of Toxoplasma gondii. Journal of Immunology 124, 2578–83.CrossRefGoogle ScholarPubMed
Kasper, L. H., Crabb, J. H. & Pfefferkorn, E. R. (1982). Isolation and characterization of monoclonal antibody-resistant antigenic mutant of Toxoplasma gondii. Journal of Immunology 129, 1696–9.Google ScholarPubMed
Kasper, L. H., Crabb, J. H. & Pfefferkorn, E. R. (1983). Purification of a major membrane protein of Toxoplasma gondii by immunoabsorption with a monoclonal antibody. Journal of Immunology 130, 2407–12.CrossRefGoogle Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Leriche, M. A. & Dubremetz, J. F. (1991). Characterization of the protein contents of rhoptries and dense granules of Toxoplasma gondii tachyzoites by subcellular fractionation and monoclonal antibodies. Molecular and Biochemical Parasitology 45, 249–60.CrossRefGoogle ScholarPubMed
Luft, B. J. & Remington, J. S. (1985). Toxoplasmosis of the central nervous system. In Current Clinical Topics in Infectious Diseases, Vol. 6 (ed. Remington, J. S. & Swartz, M. N.), pp. 315–56. New York: McGraw- Hill.Google Scholar
Nagel, S. D. & Boothroyd, J. C. (1989). The major surface antigen, P30, of Toxoplasma gondii is anchored by a glycolipid. Journal of Biological Chemistry 264, 5569–74.CrossRefGoogle ScholarPubMed
Odenthal-Schnittler, M., Tomavo, S., Becker, D., Dubremetz, J. F. & Schwarz, R. T. (1993). Evidence for N-linked glycosylation in Toxoplasma gondii. The Biochemical Journal 291, 713–21.CrossRefGoogle ScholarPubMed
Potasman, I., Araujo, F. G., Desmonts, G. & Remington, J. S. (1986). Analysis of Toxoplasma gondii antigens recognized by human sera obtained before and after acute infection. Journal of Infectious Diseases 154, 650–7.CrossRefGoogle ScholarPubMed
Remington, J. S. & Krahenbuhl, J. L. (1976). Immunology of Toxoplasma infection. In Immunology of Parasitic Infections (ed. Cohen, S. & Sadun, E), pp. 235267. Oxford: Blackwell Scientific Publications.Google Scholar
Remington, J. S., Araujo, F. G. & Desmonts, G. (1985). Recognition of different Toxoplasma antigens by IgM and IgG antibodies in mothers and their congenitally infected newborns. Journal of Infectious Diseases 153, 1020–4.CrossRefGoogle Scholar
Sabin, A. B. (1941). Toxoplasmic encephalitis in children. Journal of the American Medical Association 116, 801–7.CrossRefGoogle Scholar
Sharma, S. D., Mullenax, J., Araujo, F. G., Erlich, H. A. & Remington, J. S. (1983). Western blot analysis of the antigens of Toxoplasma gondii recognized by human IgM and IgG antibodies. Journal of Immunology 131, 977–83.CrossRefGoogle ScholarPubMed
Striepen, B., Tomavo, S., Dubremetz, J. F. & Schwarz, R. T. (1992). Identification and characterisation of glycoasyl-inositolphospholipids in Toxoplasma gondii. Biochemical Society Transactions 20, 296S.CrossRefGoogle ScholarPubMed
Tomavo, S., Schwarz, R. T. & Dubremetz, J. F. (1989). Evidence for glycosyl-phosphatidylinositol anchoring of Toxoplasma gondii major surface antigens. Molecular and Cellular Biology 9, 4576–80.Google ScholarPubMed
Tomavo, S., Dubremetz, J. F. & Schwarz, R. T. (1993). Structural analysis of glycosyl-phosphatidylinositol membrane anchor of the Toxoplasma gondii surface glycoprotein, gp23. Biology of the Cell 78, 155–62.CrossRefGoogle ScholarPubMed
Tomavo, S., Dubremetz, J. F. & Schwarz, R. T. (1992 a). A family of glycolipids from Toxoplasma gondii. Identification of candidate glycolipid precursor(s) for Toxoplasma gondii glycosylphosphaditylinositol membrane anchors. Journal of Biological Chemistry 267, 11721–8.CrossRefGoogle ScholarPubMed
Tomavo, S., Martinage, A. & Dubremetz, J. F. (1992 b). Phosphorylation of Toxoplasma gondii major surface antigens. Parasitology Research 78, 541–4.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. & Gordon, J. (1978). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350–4.CrossRefGoogle Scholar
Turco, S. J. (1991). Structural variations of the leishmanial lipophosphoglycan. In Biochemical Protozoology (ed. Coombs, G. H. & North, M. J.), pp. 304311. London: Taylor and Francis.Google Scholar