Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T19:00:36.591Z Has data issue: false hasContentIssue false

Immunocytochemical study on biologically active neurosubstances in daughter sporocysts and cercariae of Trichobilharzia ocellata and Schistosoma mansoni

Published online by Cambridge University Press:  06 April 2009

J. M. Solis-soto
Affiliation:
Graduate School of Neurosciences, Amsterdam, Research Institute for Neurosciences, Vrije Universiteit, Faculty of Biology, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
M. De Jong Brink
Affiliation:
Graduate School of Neurosciences, Amsterdam, Research Institute for Neurosciences, Vrije Universiteit, Faculty of Biology, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands

Summary

Immunocytochemical techniques applied to sections and whole-mount preparations of cercariae from two species of trematodes, Trichobilharzia ocellata and Schistosoma mansoni, revealed the occurrence of immunoreactivity (IR) to several neurosubstances in the nervous system (NS). Immunostaining was localized in cerebral ganglia, in the main commissure, in anterior and posterior nerve trunks, as well as in a pair of nerve fibres running along the tail. In T. Ocellata, immunoreactivity (IR) was observed with antisera raised against: glutamate, FMRFamide, catch-relaxing peptide (CARP), small cardiac peptide B (SCPB), arg-vasotocin (AVT), arg-vasopressin (AVP), and substance P. In S. mansoni antisera raised against glutamate, FMRFamide, CARP, SCPB, α-caudodorsal cell peptides (α-CDCP), and cholecystokinin (CCK) showed neuronal IR. With the other 51 antisera tested no IR was observed. With anti-APGWamide, IR was observed outside the NS in cells of the wall of the daughter sporocyst and in flame cells of cercariae of T. ocellata. IR to FMRFamide was present in the escape glands of the intrasporocystic cercariae of T. ocellata and S. mansoni. IR to somatostatin was observed in subtegumental parenchymal cells of cercariae of S. mansoni. IR to met-enkephalin was present in cells of the cercarial embryos and in undifferentiated cells in developing cercariae. Trematodes are, together with cestodes, phylogenetically the oldest classes in which glutamate-like material and immunopositivity to a number of neuropeptides isolated from invertebrates has been demonstrated. The results are discussed in relation to immunocytochemical data obtained for other platyhelminths, to endogenous functions of the immunopositive materials, and to their possible role in parasite–host interactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrett, J. (1991). Amino acid metabolism in helminths. Advances in Parasitology 30, 39105.CrossRefGoogle ScholarPubMed
Basch, P. F. & Gupta, B. C. (1988). Immunocytochemical localization of regulatory peptides in six species of trematode parasites. Comparative Biochemistry and Physiology 91C, 565–70.Google Scholar
Bennett, J. & Bueding, E. (1971). Localization of biogenic amines in Schistosoma mansoni. Comparative Biochemistry and Physiology 39A, 859–67.CrossRefGoogle ScholarPubMed
Cottrell, G. A. (1989). The biology of the FMRFamide-series of peptides in molluscs with special reference to Helix. Comparative Biochemistry and Physiology 93A, 41–5.CrossRefGoogle ScholarPubMed
Cousin, C. E. & Dorsey, C. H. (1991). Nervous system of Schistosoma mansoni cercaria: organization and fine structure. Parasitology Research 77, 132–41.CrossRefGoogle ScholarPubMed
Croll, R. P., Van Minnen, J., Kits, K. S. & Smith, A. B. (1991). APGWamide: molecular, histological and physiological examination of a novel neuropeptide involved with reproduction in the snail, Lymnaea stagnalis. In Molluscan Neurobiology (ed. Kits, K. S., Boer, H. H. & Joosse, J.), pp. 248–54. Amsterdam: North Holland Publishing Company.Google Scholar
Czubaj, A., Niewiadomska, I. & Piekarska, E. (1993). Histofluorescent and ultrastructural studies on the nervous system of Diplostomum pseudospathaceum Niewiadomska, 1984 Cercariae (Digenea). Parasitology Research 79, 227–34.CrossRefGoogle Scholar
De Loof, A. & Schoofs, L. (1990). Homologies between the amino acid sequences of some vertebrate peptide hormones and peptides isolated from invertebrate sources. Comparative Biochemistry and Physiology 95B, 459–68.Google ScholarPubMed
Dockray, G. J., Reeve, J. R. Jr, Shively, J., Gayton, R. J. & Barnard, C. S. (1983). A novel active pentapeptide from chicken brain identified by antibodies to FMRFamide. Nature, London 305, 328–30.Google Scholar
Ebberink, R. H. M., Price, D. A., Van Loenhout, H., Doble, K. E., Riehm, J. P., Geraerts, W. P. M. & Greenberg, M. J. (1987). The brain of Lymnaea contains a family of FMRFamide-like peptides. Peptides 8, 515–22.CrossRefGoogle ScholarPubMed
Eklove, H. & Webb, R. A. (1990). Glutamate-like immunoreactivity in the cestode Hymenolepis diminuta. Canadian Journal of Zoology 68, 2417–23.Google Scholar
Eklove, H. & Webb, R. A. (1991). The effect of L-glutamate and related agents on adenylate cyclase in the cestode Hymenolepis diminuta. Canadian Journal of Physiology and Pharmacology 69, 2836.CrossRefGoogle ScholarPubMed
Eriksson, K., Timoschkin, O. & Reuter, M. (1990). Neuroactive substances in an endemic flatworm from Lake Baikal. In The Early Brain (ed. Gustafsson, M. K. S. & Reuter, M.), pp. 137–45. Åbo Akademis Forlag – Åbo Academy Press.Google Scholar
Fairweather, I., Maule, A. G., Mitchell, S. H., Johnston, C. F. & Halton, D. W. (1987). Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitology Research 73, 255–8.Google Scholar
Fairweather, I., Mahendrasingham, S., Johnston, C. F., Halton, D. W. & Shaw, C. (1990). Peptidergic nerve elements in three developmental stages of the tetraphyllidean tapeworm Trilocularia acanthiae vulgaris. Parasitology Research 76, 497508.CrossRefGoogle Scholar
Fairweather, I. & Halton, D. W. (1991). Neuropeptides in platyhelminths. Parasitology 102 (Suppl.), S77–S92.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S. (1987). Immunocytochemical demonstration of neuropeptides and serotonin in the nervous system of adult Schistosoma mansoni. Parasitology Research 74, 168–74.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S., Wikgren, M. C., Karhi, T. J. & Schot, L. P. C. (1985). Immunocytochemical demonstration of neuropeptides and Serotonin in the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 240, 255–60.Google Scholar
Gustafsson, M. K. S., Lehtonen, M. A. I. & Sundler, F. (1986). Immunocytochemical evidence for the presence of ‘mammalian’ neurohormonal peptides in neurones of the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 243, 41–9.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S. & Eriksson, K. (1991). Localization and identification of catecholamines in the nervous system of Diphyllobothrium dendriticum (Cestoda). Parasitology Research 77, 498502.Google Scholar
Halton, D. W., Magee, R. M., Johnston, C. F., Fairweather, I. & Shaw, C. (1989). Immunocytochemical mapping of 5-hydroxytryptamine (5-HT) and regulatory peptides in Certain marine trematode larvae. Proceedings of the Joint British, Netherlands and Belgian Societies for Parasitology with the Belgian Society for Protozoology, The University of Southampton, p. 40. (Abstract.)Google Scholar
Halton, D. W., Fairweather, I., Shaw, C. & Johnston, C. F. (1990). Regulatory peptides in parasitic platyhelminths. Parasitology Today 6, 284–90.CrossRefGoogle ScholarPubMed
Hirata, T., Kubota, I., Takabatake, I., Kawahara, A., Shimamoto, N. & Muneoka, Y. (1987). Catch-relaxing peptide isolated from Mytilus pedal ganglia. Brain Research 422, 373–6.CrossRefGoogle ScholarPubMed
Hirata, T., Kubota, I., Imada, M., Muneoka, Y. & Kobayashi, M. (1989). Effects of the catch-relaxing peptide on molluscan muscles. Comparative Biochemistry and Physiology 92C, 283–8.Google Scholar
Keenan, L. & Koopowitz, H. (1982). Physiology and in situ identification of putative aminergic neurotransmitters in the nervous system of Gyrocotyle fimbriata, a parasitic flatworm. Journal of Neurobiology 13, 921.CrossRefGoogle ScholarPubMed
Kerkhoven, R. M., Van Minnen, J., Ramkema, M. D., Groenewegen, H. J. & Boer, H. H. (1991). Neurons in the CNS of the rat are immunoreactive to an antiserum raised to the α-CDCP neuropeptide of the pond snail Lymnaea stagnalis. Ph.D. thesis, Vrije Universiteit, Amsterdam, pp. 115130.Google Scholar
Kumazawa, H. & Moriki, T. (1986). Immunoenzymatic demonstration of a presumptive prolactin-like substance in Hymenolepis nana. Zeitschrift für Parasitenkunde 72, 137–9.CrossRefGoogle ScholarPubMed
Kuroki, Y., Kanda, T., Kubota, I., Fujisawa, Y., Ikeda, T., Miura, A., Minamitake, Y. & Muneoka, Y. (1990). A molluscan neuropeptide related to the crustacean hormone, RPCH. Biochemical and Biophysical Research Communications 167, 273–9.CrossRefGoogle Scholar
Lee, M. B., Bueding, E. & Schiller, E. L. (1978). The occurrence and distribution of 5-hydroxytryptamine in Hymenolepis diminuta and H. nana. Journal of Parasitology 64, 257–64.CrossRefGoogle ScholarPubMed
McLaren, D. J. (1980). Schistosoma mansoni: the parasite surface in relation to host immunity. In Tropical Medicine Research Studies (ed. Brown, K. H.). Chichester: Research Studies Press.Google Scholar
Magee, R. M., Johnston, C. F., Fairweather, I., Halton, D. W. & Shaw, C. (1989 a). Serotonin (5-HT) and neuropeptides in the intramolluscan stages of Fasciola hepatica. Proceedings of the Joint British, Netherlands and Belgian Societies for Parasitology with the Belgian Society for Protozoology, The University of Southampton, p. 40. (Abstract.)Google Scholar
Magee, R. M., Fairweather, I., Johnston, C. F., Halton, D. W. & Shaw, C. (1989 b). Immunocytochemical demonstration of neuropeptides in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitology 98, 227–38.CrossRefGoogle ScholarPubMed
Maule, A. G., Shaw, C., Halton, D. W., Thim, L., Johnston, C. F., Fairweather, I. & Buchanan, K. D. (1991). Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa (Cestoda: Cyclophyllidea). Parasitology 102, 309–16.Google Scholar
Maule, A. G., Halton, D. W., Shaw, C. & Johnston, C. F. (1993). The cholinergic, serotonergic and peptidergic components of the nervous system of Moniezia expansa (Cestoda, Cyclophyllidea). Parasitology 106, 429–40.Google Scholar
Mellink, J. J. & Van Den Bovenkamp, W. (1985). In vitro culture of intramolluscan stages of the avian schistosome Trichobilharzia ocellata. Zeitschrift für Parasitenkunde 71, 337–51.CrossRefGoogle ScholarPubMed
Niewiadomska, K. & Moczoń, T. (1982). The nervous system of Diplostomum pseudospathaceum Niewiadomska (Digenea, Diplostomatidae). I. Nervous system and chaetotaxy in cercariae. Zeitschrift für Parasitenkunde 68, 295304.Google Scholar
Orido, Y. (1989). Histochemical evidence of the catecholamine-associated nervous system in certain schistosome cercariae. Parasitology Research 76, 146–9.CrossRefGoogle ScholarPubMed
Otterson, O. P. & Storm-Mathisen, J. (1984). Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. Journal of Comparative Neurology 229, 374–92.CrossRefGoogle Scholar
Otterson, O. P. & Storm-Mathisen, J. (1985). Different neuronal localization of aspartate-like and glutamate-like immunoreactivities in the hippocampus of rat, guinea-pig and Senegalese baboon (Papio papio), with a note on the distribution of γ-aminobutyrate. Neuroscience 16, 589606.Google Scholar
Price, D. A. & Greenberg, M. J. (1977). Structure of a molluscan cardioexcitatory neuropeptide. Science 197, 670–1.CrossRefGoogle ScholarPubMed
Reuter, M. & Gustafsson, M. (1989). ‘Neuroendocrine cells’ in flatworms – progenitors to metazoan neurons? Archives of Histology and Cytology 52, 253–63.CrossRefGoogle ScholarPubMed
Richard, J., Klein, M. J. & Stoeckel, M. E. (1989). Neural and glandular localization of substance P in Echinostoma caproni (Trematoda: Digenea). Parasitology Research 75, 641–8.Google Scholar
Samii, S. I. & Webb, R. A. (1990). Acetylcholine-like immunoreactivity in the cestode Hymenolepis diminuta. Brain Research 513, 161–5.CrossRefGoogle ScholarPubMed
Schot, L. P. C., Boer, H. H., Swaab, D. F. & Van Noorden, S. (1981). Immunocytochemical demonstration of peptidergic neurons in the central nervous system of the pond snail Lymnaea stagnalis with antisera raised to biologically active peptides of vertebrates. Cell and Tissue Research 216, 273–91.Google Scholar
Skuce, P. J., Johnston, C. F., Fairweather, I., Halton, D. W. & Shaw, C. (1990). A confocal scanning laser microscope study of the peptidergic and serotoninergic components of the nervous system in larval Schistosoma mansoni. Parasitology 101, 227–34.CrossRefGoogle ScholarPubMed
Sluiters, J. F., Brussaard-Wüst, C. M. & Meuleman, E. A. (1980). The relationship between miracidial dose, production of cercariae, and reproductive activity of the host in the combination Trichobilharzia ocellata and Lymnaea stagnalis. Zeitschrift für Parasitenkunde 63, 1326.Google Scholar
Stern, A. S., Lewis, R. V., Kimuru, S., Rossier, J., Geber, L. D., Brink, L., Stein, S. & Udenfried, S. (1979). Isolation of the opioid heptapeptide Met-enkephalin6 (Arg7, Phe) from bovine adrenal medullary granules and striatum. Proceedings of the National Academy of Sciences, USA 76, 6680–3.CrossRefGoogle Scholar
Theunis, W., Van Minnen, J. & De Loof, A. (1990). Immunocytochemical localization in the central nervous system of four different insect species of molecules immunoreactive against peptides present in the caudodorsal cells of Lymnaea stagnalis. General and Comparative Endocrinology 70, 415–22.Google Scholar
Thompson, C. S. & Mettrick, D. F. (1989). The effects of 5-hydroxytryptamine and glutamate on muscle contraction in Hymenolepis diminuta (Cestoda). Canadian Journal of Zoology 67, 1257–62.CrossRefGoogle Scholar
Thorndyke, M. C. & Whitfield, P. J. (1987). Vasoactive intestinal polypeptide-like immunoreactive tegumental cells in the digenean helminth Echinostoma liei. Possible role in host–parasite interactions. General and Comparative Endocrinology 68, 202–7.Google Scholar
Van Kesteren, R. E., Smit, A. B., With, N. D., Van Minnen, J., Dirks, R. W., Van Der Schors, R. C. & Joosse, J. (1992). A vasopressin-related peptide in the mollusc, Lymnaea stagnalis: peptide structure, prohormone organization, evolutionary aspects of Lymnaea conopressin. In The Peptidergic Neuron, Progress in Brain Research, vol. 92 (ed. Joosse, J., Buijs, R. M. & Tilders, F. J. H.), pp. 4757. Amsterdam: Elsevier Science Publishers (Biomedical Division).CrossRefGoogle Scholar
Van Minnen, J., Schallig, H. D. F. H. & Ramkema, M. D. (1991). Identification of egg-laying hormone-producing systems in gastropod molluscs. In Molluscan Neurobiology (ed. Kits, K. S., Boer, H. H. & Joosse, J.), pp. 280–5. Amsterdam: North Holland Publishing Company.Google Scholar
Walker, R. J., Mat Jais, A. M., Sharma, R., Pedder, S., Kubota, I. & Muneoka, Y. (1991). Actions of catch-relaxing peptide, CARP, and other peptides on Helix central neurons. In Molluscan Neurobiology (ed. Kits, K. S., Boer, H. H. & Joosse, J.), pp. 97102. Amsterdam: North Holland Publishing Company.Google Scholar
Webb, R. A. (1986). The uptake and metabolism of L-glutamate by tissue slices of the cestode Hymenolepis diminuta. Comparative Biochemistry and Physiology 85C, 151–62.Google Scholar
Webb, R. A. & Eklove, H. (1989). Demonstration of intense glutamate-like immunoreactivity in the longitudinal nerve cords of the cestode Hymenolepis diminuta. Parasitology Research 75, 545–8.Google Scholar
Webster, L. A. & Wilson, R. A. (1970). The chemical composition of protonephridial canal fluid from the cestode Hymenolepis diminuta. Comparative Biochemistry and Physiology 35, 201–9.Google Scholar
Wikgren, M., Reuter, M. & Gustafsson, M. (1986). Neuropeptides in free-living and parasitic flatworms (Platyhelminthes). An immunocytochemical study. Hydrobiologia 132, 93–9.Google Scholar
Wikgben, M. C. & Thorndyke, M. C. (1990). An echinoderm neuropeptide in flatworms? In The Early Brain (ed. Gustafsson, M. K. S. & Reuter, M.), pp. 4552. Åbo Akademis Forlag – Åbo Academy Press.Google Scholar