Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T02:38:33.705Z Has data issue: false hasContentIssue false

Immunocytochemical demonstration of a neuropeptide in Ascaris suum (Nematoda) using an antiserum to FMR Famide

Published online by Cambridge University Press:  06 April 2009

T. R. B. Davenport
Affiliation:
Department of Pure and Applied Biology, University of Leeds, Leeds LS2 9JT
D. L. Lee
Affiliation:
Department of Pure and Applied Biology, University of Leeds, Leeds LS2 9JT
R. E. Isaac
Affiliation:
Department of Pure and Applied Biology, University of Leeds, Leeds LS2 9JT

Summary

A FMRFamide-like peptide has been detected in the nematode Ascaris suum, using the peroxidase-anti-peroxidase (PAP) immunocytochemical technique. Positive reactions were obtained in both the central nervous system and the peripheral nervous system of the worm, the strongest reactions being in the anterior nerve ring, the cephalic papillary ganglia, the lateral ganglia and the dorso-rectal ganglion. Immunoreactivity was observed along the length of the main nerve cords of the worm and, to a lesser extent, in the pharyngeal nerve cords. The possible role of this neuropeptide in the physiology of the nematode is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carroll, L. S., Carrow, G. M. & Calabrese, R. L. (1986). Localization and release of FMRFamidelike immunoreactivity in the cerebral neuroendocrine system of Manduca sexta. Journal of Experimental Biology 126, 114.CrossRefGoogle ScholarPubMed
Chitwood, B. G. & Chitwood, M. B. (1950). Introduction to Nematology. Baltimore, London and Tokyo: University Park Press.Google Scholar
Cottrell, G. A., Greenberg, M. J. & Price, D. A. (1983). Differential effects of the molluscan neuropeptide FMRFamide and the related Met-enkephalin derivative YGGFMRFamide on the Helix tentacle retractor muscle. Comparative Biochemistry and Physiology 75C, 373–5.Google Scholar
Ebberink, R. H. M., Price, D. A., van Loenhout, H., Doble, K. E., Riehm, J. P., Geraerts, W. P. M. & Greenberg, M. J. (1987). The brain of Lymnaea contains a family of FMRFamide-like peptides. Peptides 8, 515–22.CrossRefGoogle ScholarPubMed
Evans, P. D. (1980). Biogenic amines in the insect nervous system. Advances in Insect Physiology 15, 317473.CrossRefGoogle Scholar
Evans, P. D. & Myers, C. M. (1986). The modulatory actions of FMRFamide and related peptides on locust skeletal muscle. Journal of Experimental Biology 126, 403–22.CrossRefGoogle Scholar
Frandsen, J. C. & Bone, L. W. (1987). Biogenic amines and their metabolites in Trichostrongylus colubriformis, a nematode parasite of ruminants. Comparative Biochemistry and Physiology 87 C, 75–7.Google ScholarPubMed
Gration, K. A. F., Harrow, I. D. & Martin, R. J. (1986). GABA receptors in parasites of veterinary importance. In Neuropharmacology and Pesticide Action (ed. Ford, M. G., Lunt, G. G., Reay, R. C. & Usherwood, P. N. R.) pp. 414–22. Chichester, England: Ellis Horwood.Google Scholar
Greenberg, M. J. & Price, D. A. (1980). Cardioregulatory peptides in molluscs. In Peptides: Integrators of Cell and Tissue Function (ed. Bloom, F. E.) pp. 107–26. New York: Raven Press.Google Scholar
Greenberg, M. J. & Price, D. A. (1983). Invertebrate neuropeptides: Native and naturalized. Annual Review of Physiology 45, 271–88.CrossRefGoogle ScholarPubMed
Greenberg, M. J., Price, D. A. & Lehman, H. K. (1985). FMRFamide-like peptides of molluscs and vertebrates: Distribution and evidence of function. In Neurosecretion and the Biology of Neuropeptides (ed. H., Kobayashi, Bern, H. A. and A., Urano) pp. 370–6. Tokyo: Japan Scientific Societies Press.Google Scholar
Grimmelikhuijzen, C. J. P. & Graff, D. (1986). Isolation of < Glu-Gly-Arg-Phe-NH2 (Antho-RFamide), a neuropeptide from sea anemones. Proceedings of the National Academy of Science, USA 83, 9817–21.CrossRefGoogle Scholar
Gustaffson, M. K. S. (1985). Cestode neurotransmitters. Parasitology Today 1, 72–5.CrossRefGoogle Scholar
Gustaffson, M. K. S., Wikgren, M. C., Karhi, T. J. & Schot, L. P. C. (1985). Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 240, 255–60.Google Scholar
Gustaffson, M. K. S., Lehtonen, M. A. I. & Sundler, F. (1986). Immunocytochemical evidence for the presence of ‘mammalian' neurohormonal peptides in neurones of the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 243, 41–9.Google Scholar
Huang, W. M., Gibson, S., Facer, P., Gu, J. & Polak, J. M. (1983). Improved section adhesive for immunocytochemistry using high molecular weight polymers of L-lysine as a slide coating. Histochemistry 77, 275–9.CrossRefGoogle ScholarPubMed
Jennings, J. B., Davenport, T. R. B. & Varndell, I. M. (1987). FMRFamide-like immunoreactivity and arylamidase activity in turbellarians and nemerteans – Evidence for a novel neurovascular coordinating system in nemerteans. Comparative Biochemistry and Physiology 86C, 425–30.Google ScholarPubMed
Joose, J. & Geraerts, W. P. M. (1983). Endocrinology. In The Mollusca, Vol. 4, Physiology, part 1 (ed. Saleuddin, A. S. M. and Wilbur, K. M.), pp. 317406. London: Academic Press.CrossRefGoogle Scholar
Kerboeuf, D. & Dubois, M. P. (1981). Mise en évidence chez un nématode parasite de vertébrés (Heligmosomoides polygyrus) de cellules révélées en immunofluorescence par un anticorps anti α endorphine. Comptes Rendus hebdomadaires de séances de l'Académie des Sciences, Paris (Série III – Science de la Vie) 293, 675–8.Google Scholar
Kuhlman, J. R., Li, C. & Calabrese, R. L. (1985). FMRFamide-like substances in the leech. 1. Immunocytochemical localization. Journal of Neuroscience 5, 2301–9.CrossRefGoogle Scholar
Mishra, S. K., Sen, R. & Ghatak, S. (1984). Ascaris lumbricoides and Ascaridia galli: Biogenic amines in adults and developmental stages. Experimental Parasitology 57, 34–9.CrossRefGoogle ScholarPubMed
Muneoka, Y. & Twarog, B. M. (1983). Neuromuscular transmission and excitation-contraction coupling in molluscan muscle. In The Mollusca, Vol. 4, Physiology, part 1 (ed. Saleuddin, A. S. M. and Wilbur, K. M.), pp. 317406. London: Academic Press.Google Scholar
Myers, C. M. & Evans, P. D. (1985). The distribution of bovine pancreatic polypeptide/FMRFamidelike immunoreactivity in the ventral nervous system of the locust. Journal of Comparative Neurology 234, 116.CrossRefGoogle ScholarPubMed
O'Shea, M. & Schaffer, M. (1985). Neuropeptide function: the invertebrate contribution. Annual Review of Neuroscience 8, 171–98.CrossRefGoogle ScholarPubMed
Price, D. A. (1986). Evolution of a molluscan cardioregulatory neuropeptide. American Zoologist 26, 1007–15.CrossRefGoogle Scholar
Price, D. A. & Greenberg, M. J. (1977). Structure of a molluscan cardioexcitatory neuropeptide. Science 197, 670–1.CrossRefGoogle ScholarPubMed
Schot, L. P. C., Boer, H. H. & Wijdenes, J. (1983). Localization of neurons innervating the heart of Lymnaea stagnalis studied immunocytochemically with anti-FMRFamide and anti-vasotocin. In Molluscan Neuro-endocrinology (ed. J., Lever and Boer, H. H.) pp. 203–8. Monographs of the Royal Netherlands Academy of Arts and Sciences. Amsterdam, Oxford and New York: North Holland Publishing Company.Google Scholar
Sharpe, M. J., Atkinson, H. J., Trett, M. W. & Lee, D. L. (1980). Visualization of neurotransmitters in nematodes. In The Host-Invader Interplay (ed. H., van den Bossche), pp. 713–16. Amsterdam: Elsevier/ North Holland Biomedical Press.Google Scholar
Sternberger, L. A. (1974). Immunocytochemistry. In Foundation of Immunology Series (ed. A., Oster and L., Weiss). Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
Stretton, A. O. W., Fishpool, R. M., Southgate, E., Donmoyer, J. E., Walrond, J. P., Moses, J. E. & Kass, I. S. (1978). Structure and physiological activity of the motoneurons of the nematode Ascaris. Proceedings of the National Academy of Science, USA 75, 3494–7.CrossRefGoogle ScholarPubMed
Stretton, A. O. W., Davis, R. E., Angstadt, J. D., Donmoyer, J. E. & Johnson, C. D. (1985). Neural control of behaviour in Ascaris. Trends in Neuroscience 8, 294300.CrossRefGoogle Scholar
Walther, C., Scheibe, M. & Voigt, K. H. (1984). Synaptic and non-synaptic effects of molluscan cardioexcitatory neuropeptides on locust skeletal muscle. Neuroscience Letters 45, 99104.CrossRefGoogle ScholarPubMed
Wikgren, M. M., Reuter, M. & Gustaffson, M. (1986) Neuropeptides in free-living and parasitic flatworms (Platyhelminthes). An immunocytochemical study. Hydrobiologia 132, 93–9.CrossRefGoogle Scholar
Willett, J. D. (1980). Control mechanisms in nematodes. In Nematodes as Biological Models, vol. 1 (ed. Zuckerman, B. M.) pp. 197225. New York: Academic Press.Google Scholar