Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T20:01:39.609Z Has data issue: false hasContentIssue false

Immunization with SmIg, a novel tegument protein from Schistosoma mansoni, fails to induce protection in mice but reduces liver pathology

Published online by Cambridge University Press:  16 October 2009

J. M. R. PINHO
Affiliation:
Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais Minas Gerais, Belo Horizonte, MG, Brazil
F. C. CARDOSO
Affiliation:
Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais Minas Gerais, Belo Horizonte, MG, Brazil
D. O. LOPES
Affiliation:
Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais Minas Gerais, Belo Horizonte, MG, Brazil
C. S. PINHEIRO
Affiliation:
Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais Minas Gerais, Belo Horizonte, MG, Brazil
M. V. CALIARI
Affiliation:
Department of General Pathology, Biological Sciences Institute, Federal University of Minas Gerais Minas Gerais, Belo Horizonte, MG, Brazil
F. M. S. OLIVEIRA
Affiliation:
Department of General Pathology, Biological Sciences Institute, Federal University of Minas Gerais Minas Gerais, Belo Horizonte, MG, Brazil
L. C. LEITE
Affiliation:
Biotechnology Center, Butantan Institute, Av. Vital Brasil 1500, 05503-900, São Paulo, SP, Brazil
S. C. OLIVEIRA*
Affiliation:
Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais Minas Gerais, Belo Horizonte, MG, Brazil
*
*Corresponding author: Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais Minas Gerais, Belo Horizonte, MG, Brazil. Tel/Fax: +55 31 34092666. E-mail: [email protected]

Summary

Proteins associated with the schistosome tegument are of great importance for the development of new intervention strategies since they may be exposed on the surface of the parasite. Herein, we have isolated a cDNA clone encoding for the Schistosoma mansoni SmIg and its recombinant protein was tested as a potential vaccine candidate. Initially, its amino acid sequence was analysed by bioinformatics and shown to possess an N-terminal signal peptide, a C-terminal transmembrane helix, 4 glycosylation sites, an immunoglobulin conserved domain and 73% similarity with a hypothetical S. japonicum protein of unknown function. SmIg was produced by E. coli as a recombinant protein (rSmIg) and its protective effectiveness was evaluated against S. mansoni infection with 100 cercariae in a murine model. Mice immunized with rSmIg induced an immune response characterized by dominant IgG1 isotype and significant levels of IFN-γ, TNF-α, IL-10 and IL-4. Although immunogenic, the recombinant vaccine failed to induce worm burden reduction when compared to the infected control group. However, rSmIg-immunized mice had significant reductions of liver granuloma volume and fibrosis content by 31·8% and 49%, respectively. In conclusion, SmIg is a new tegument protein from S. mansoni that plays an important role in reducing pathology induced by parasite infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bartley, P. B., Ramm, G. A., Jones, M. K., Ruddel, R. G., Li, Y. and McManus, D. P. (2006). A contributory role for activated hepatic stellate cells in the dynamics of Schistosoma japonicum egg-induced fibrosis. International Journal for Parasitology 36, 993–1001.CrossRefGoogle ScholarPubMed
Bazzone, L. E., Smith, P. M., Rutitzky, L. I., Shainheit, M. G., Urban, J. F., Setiawan, T., Blum, A. M., Weinstock, J. V. and Stadecker, M. J. (2008). Coinfection with the intestinal nematode Heligmosomoides polygyrus markedly reduces hepatic egg-induced immunopathology and proinflammatory cytokines in mouse models of severe schistosomiasis. Infection and Immunity 76, 51645172.CrossRefGoogle ScholarPubMed
Bergquist, N. R. (1995). Schistosomiasis vaccine development: approaches and prospects. Memorias do Instituto Oswaldo Cruz 90, 221227.CrossRefGoogle ScholarPubMed
Bergquist, R., Al-Sherbiny, M., Barakat, R. and Olds, R. (2002). Blueprint for schistosomiasis vaccine development. Acta Tropica 82, 183192.CrossRefGoogle ScholarPubMed
Bethony, J. M., Diemert, D. J., Oliveira, S. C. and Loukas, A. (2008). Can schistosomiasis really be consigned to history without a vaccine? Vaccine 26, 33733376.CrossRefGoogle ScholarPubMed
Boros, D. L. (1989). Immunopathology of Schistosoma mansoni infection. Clinical Microbiology Reviews 2, 250269.CrossRefGoogle ScholarPubMed
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Braschi, S., Curwen, R. S., Ashton, P. D., Verjovski-Almeida, S. and Wilson, A. (2006). The tegument surface membranes of the human blood parasite Schistosoma mansoni: a proteomic analysis after differential extraction. Proteomics 6, 14711482.CrossRefGoogle ScholarPubMed
Cardoso, F. C., Macedo, G. C., Gava, E., Kitten, G. T., Mati, V. L., De Melo, A. L., Caliari, M. V., Almeida, G. T., Venancio, T. M., Verjovski-Almeida, S. and Oliveira, S. C. (2008). Schistosoma mansoni tegument protein Sm29 is able to induce a Th1-type of immune response and protection against parasite infection. PLoS Neglected Tropical Diseases 2, e308.CrossRefGoogle ScholarPubMed
Cardoso, L. S., Araujo, M. I., Goes, A. M., Pacifico, L. G., Oliveira, R. R. and Oliveira, S. C. (2007). Polymyxin B as inhibitor of LPS contamination of Schistosoma mansoni recombinant proteins in human cytokine analysis. Microbial Cell Factories 6, 16.CrossRefGoogle ScholarPubMed
Chitsulo, L., Loverde, P. and Engels, D. (2004). Schistosomiasis. Nature Reviews Microbiology 2, 1213.CrossRefGoogle ScholarPubMed
Coulson, P. S. and Wilson, R. A. (1997). Recruitment of lymphocytes to the lung through vaccination enhances the immunity of mice exposed to irradiated schistosomes. Infection and Immunity 65, 4248.CrossRefGoogle Scholar
Fonseca, C. T., Brito, C. F., Alves, J. B. and Oliveira, S. C. (2004). IL-12 enhances protective immunity in mice engendered by immunization with recombinant 14 kDa Schistosoma mansoni fatty acid-binding protein through an IFN-gamma and TNF-alpha dependent pathway. Vaccine 22, 503510.CrossRefGoogle ScholarPubMed
Garcia, T. C., Fonseca, C. T., Pacifico, L. G., DuraesFDO, V. FDO, V., Marinho, F. A., Penido, M. L., Caliari, M. V., De Melo, A. L., Pinto, H. A., Barsante, M. M., Cunha-Neto, E. and Oliveira, S. C. (2008). Peptides containing T cell epitopes, derived from Sm14, but not from paramyosin, induce a Th1 type of immune response, reduction in liver pathology and partial protection against Schistosoma mansoni infection in mice. Acta Tropica 106, 162167.CrossRefGoogle Scholar
Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D. and Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31, 37843788.CrossRefGoogle ScholarPubMed
Hogg, K. G., Kumkate, S. and Mountford, A. P. (2003). IL-10 regulates early IL-12-mediated immune responses induced by the radiation-attenuated schistosome vaccine. International Immunology 15, 14511459.CrossRefGoogle ScholarPubMed
Hotez, P. J., Bethony, J. M., Oliveira, S. C., Brindley, P. J. and Loukas, A. (2008). Multivalent anthelminthic vaccine to prevent hookworm and schistosomiasis. Expert Review of Vaccines 7, 745752.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.CrossRefGoogle ScholarPubMed
Layland, L. E., Wagner, H. and Da Costa, C. U. (2005). Lack of antigen-specific Th1 response alters granuloma formation and composition in Schistosoma mansoni-infected MyD88-/- mice. European Journal of Immunology 35, 32483257.CrossRefGoogle ScholarPubMed
Liu, F., Lu, J., Hu, W., Wang, S. Y., Cui, S. J., Chi, M., Yan, Q., Wang, X. R., Song, H. D., Xu, X. N., Wang, J. J., Zhang, X. L., Zhang, X., Wang, Z. Q., Xue, C. L., Brindley, P. J., McManus, D. P., Yang, P. Y., Feng, Z., Chen, Z. and Han, Z. G. (2006). New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLoS Pathogens 2, e29.CrossRefGoogle ScholarPubMed
Loukas, A., Tran, M. and Pearson, M. S. (2007). Schistosome membrane proteins as vaccines. International Journal for Parasitology 37, 257263.CrossRefGoogle ScholarPubMed
Nielsen, H., Engelbrec, H. T. J., Brunak, S. and Von Heijne, G. (1997). A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. International Journal of Neural Systems 8, 581599.CrossRefGoogle ScholarPubMed
Oliveira, S. C., Fonseca, C. T., Cardoso, F. C., Farias, L. P. and Leite, L. C. (2008). Recent advances in vaccine research against schistosomiasis in Brazil. Acta Tropica 108, 256262.CrossRefGoogle ScholarPubMed
Pacifico, L. G., Fonseca, C. T., Barsante, M. M., Cardoso, L. S., Araujo, M. I. and Oliveira, S. C. (2006). Aluminum hydroxide associated to Schistosoma mansoni 22·6 kDa protein abrogates partial protection against experimental infection but not alter interleukin-10 production. Memorias do Instituto Oswaldo Cruz 101 (Suppl 1), 365368.CrossRefGoogle Scholar
Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd Edn.Cold Spring Harbor, New York, USA.Google Scholar
Sadler, C. H., Rutitzky, L. I., Stadecker, M. J. and Wilson, R. A. (2003). IL-10 is crucial for the transition from acute to chronic disease state during infection of mice with Schistosoma mansoni. European Journal of Immunology 33, 880888.CrossRefGoogle ScholarPubMed
Siles-Lucas, M., Uribe, N., Lopez-Aban, J., Vicente, B., Orfao, A., Nogal-Ruiz, J. J., Feliciano, A. S. and Muro, A. (2007). The Schistosoma bovis Sb14-3-3zeta recombinant protein cross-protects against Schistosoma mansoni in BALB/c mice. Vaccine 25, 72177223.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 43504354.CrossRefGoogle ScholarPubMed
Tran, M. H., Pearson, M. S., Bethony, J. M., Smyth, D. J., Jones, M. K., Duke, M., Don, T. A., McManus, D. P., Correa-Oliveira, R. and Loukas, A. (2006). Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nature Medicine 12, 835840.CrossRefGoogle ScholarPubMed
Verjovski-Almeida, S. and DeMarco, R. (2008). Current developments on Schistosoma proteomics. Acta Tropica 108, 183185.CrossRefGoogle ScholarPubMed
Verjovski-Almeida, S., DeMarco, R., Martins, E. A., Guimaraes, P. E., Ojopi, E. P., Paquola, A. C., Piazza, J. P., Nishiyama, M. Y. Jr.Kitajima, J. P., Adamson, R. E., Ashton, P. D., Bonaldo, M. F., Coulson, P. S., Dillon, G. P., Farias, L. P., Gregorio, S. P., Ho, P. L., Leite, R. A., Malaquias, L. C., Marques, R. C., Miyasato, P. A., Nascimento, A. L., Ohlweiler, F. P., Reis, E. M., Ribeiro, M. A., Sa, R. G., Stukart, G. C., Soares, M. B., Gargioni, C., Kawano, T., Rodrigues, V., Madeira, A. M., Wilson, R. A., Menck, C. F., Setubal, J. C., Leite, L. C. and Dias-Neto, E. (2003). Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nature Genetics 35, 148157.CrossRefGoogle ScholarPubMed
Wilson, R. A. and Coulson, P. S. (2006). Schistosome vaccines: a critical appraisal. Memorias do Instituto Oswaldo Cruz 101 (Suppl. 1), 1320.CrossRefGoogle ScholarPubMed
Wynn, T. A. and Cheever, A. W. (1995). Cytokine regulation of granuloma formation in schistosomiasis. Current Opinion in Immunology 7, 505511.CrossRefGoogle ScholarPubMed
Wynn, T. A. and Hoffmann, K. F. (2000). Defining a schistosomiasis vaccination strategy – is it really Th1 versus Th2? Parasitology Today 16, 497501.CrossRefGoogle ScholarPubMed