Hostname: page-component-599cfd5f84-jhfc5 Total loading time: 0 Render date: 2025-01-07T06:59:23.297Z Has data issue: false hasContentIssue false

Identification of mixed and successive blood meals of mosquitoes using MALDI-TOF MS protein profiling

Published online by Cambridge University Press:  08 January 2020

Fatalmoudou Tandina
Affiliation:
Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France Malaria Research and Training Center, DEAP/FMOS, UMI 3189, University of Science, Techniques and Technology, Bamako, Mali IHU-Méditerranée Infection, Marseille, France
Sirama Niare
Affiliation:
Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France Malaria Research and Training Center, DEAP/FMOS, UMI 3189, University of Science, Techniques and Technology, Bamako, Mali IHU-Méditerranée Infection, Marseille, France
Lionel Almeras
Affiliation:
Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France IHU-Méditerranée Infection, Marseille, France Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
Bernard Davoust
Affiliation:
IHU-Méditerranée Infection, Marseille, France Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France.
Ogobara K Doumbo
Affiliation:
Malaria Research and Training Center, DEAP/FMOS, UMI 3189, University of Science, Techniques and Technology, Bamako, Mali
Didier Raoult
Affiliation:
IHU-Méditerranée Infection, Marseille, France Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France.
Philippe Parola
Affiliation:
Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France IHU-Méditerranée Infection, Marseille, France
Maureen Laroche*
Affiliation:
Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France IHU-Méditerranée Infection, Marseille, France
*
Author for correspondence: Maureen Laroche, E-mail: [email protected]

Abstract

Background

The accurate and rapid identification of mosquito blood meals is critical to study the interactions between vectors and vertebrate hosts and, subsequently, to develop vector control strategies. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has been shown to be a reliable and effective tool for identifying single blood meals from mosquitoes.

Methods

In this study, we developed MALDI-TOF MS profiling protocols to identify Anopheles gambiae Giles, Anopheles coluzzii and Aedes albopictus mosquitoes’ mixed blood meals and the last of successive blood meals. The mosquitoes were either successively artificially fed with distinct host bloods or engorged with mixed bloods from distinct vertebrate hosts, such as humans, sheep and dogs.

Results

Blind test analyses revealed a correct identification of mixed blood meals from mosquitoes using MALDI-TOF MS profiling. The 353 MS spectra from mixed blood meals were identified using log score values >1.8. All MS spectra (n = 244) obtained from mosquitoes' successive blood meals were reproducible and specific to the last blood meal, suggesting that the previous blood meals do not have an impact on the identification of the last one.

Conclusion

MALDI-TOF MS profiling approach appears to be an effective and robust technique to identify the last and mixed blood meals during medical entomological surveys.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

Apperson, CS, Harrison, BA, Unnasch, TR, Hassan, HK, Irby, WS, Savage, HM, Aspen, SE, Watson, DW, Rueda, LM, Engber, BR and Nasci, RS (2002) Host-feeding habits of Culex And other mosquitoes (Diptera: Culicidae) in the Borough of Queens in New York City, with characters and techniques for identification of Culex mosquitoes. Journal of Medical Entomology 39, 777785.CrossRefGoogle ScholarPubMed
Arfuso, F, Gaglio, G, Abbate, JM, Caracappa, G, Lupia, A, Napoli, E, Giarratana, F, Latrofa, MS, Giannetto, S, Otranto, D and Brianti, E (2019) Identification of phlebotomine sand flies through MALDI-TOF mass spectrometry and in-house reference database. Acta Tropica 94, 4752.CrossRefGoogle Scholar
Awono-Ambene, HP, Diawara, L and Robert, V (2001) Comparison of direct and membrane feeding methods to infect Anopheles arabiensis with Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene 64, 3234.CrossRefGoogle ScholarPubMed
Becker, N, Petriae, D, Zgomba, M, Baose, C, Madon, M and Kaiser, A (2010) Mosquitoes and Their Control, 2nd edn, Heildelberg, Germany: Springer.CrossRefGoogle Scholar
Beier, JC, Perkins, PV, Wirtz, RA, Koros, J and Diggs, D (1988) Gargan TP 2nd and Koech DK (1988) bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. Journal of Medical Entomology 25, 916.CrossRefGoogle Scholar
Bente, DA, Forrester, NL, Watts, DM, McAuley, AJ, Whitehouse, CA and Bray, M (2013) Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Research 100, 159189.CrossRefGoogle ScholarPubMed
Caglioti, C, Lalle, E, Castilletti, C, Carletti, F, Capobianchi, MR and Bordi, L (2013) Chikungunya virus infection: an overview. New Microbiology 36, 211222.Google ScholarPubMed
Carnevale, P, Rovert, V, Manguin, S, Corbel, V, Fontenille, D, Garros, C, Rogier, C and Roux, J (2009) Les Anophèles – biologie, transmission du Plasmodium Et Lutte Antivectorielle. IRD ed. Marseille 2009, 391.Google Scholar
Chavy, A, Nabet, C, Normand, AC, Kocher, A, Ginouves, M, Prévot, G, Vasconcelos Dos Santos, T, Demar, M, Piarroux, R and de Thoisy, B (2019) Identification of French Guiana sand flies using MALDI-TOF mass spectrometry with a new massspectra library. PLoS Neglected Tropical Diseases 13, e0007031.CrossRefGoogle Scholar
Coulibaly, B, Kone, R, Barry, MS, Emerson, B, Coulibaly, MB, Niare, O, Beavogui, AH, Traore, SF, Vernick, KD and Riehle, MM (2016) Malaria vector populations across ecological zones in Guinea Conakry and Mali, West Africa. Malaria Journal 15, 191.CrossRefGoogle ScholarPubMed
Deilgat, M, Geduld, J and Drebot, M (2014) Chikungunya outbreak in the Caribbean 2013–2014. Canada Communicable Diseases Report 40, 712.CrossRefGoogle ScholarPubMed
Diarra, AZ, Almeras, L, Laroche, M, Berenger, JM, Kone, AK, Bocoum, Z, Dabo, A, Doumbo, O, Raoult, D and Parola, P (2017) Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali. PLoS Neglected Tropical Diseases 11, e0005762.CrossRefGoogle ScholarPubMed
Egizi, A, Healy, SP and Fonseca, DM (2013) Rapid blood meal scoring in anthropophilic Aedes Albopictus and application of PCR blocking to avoid pseudogenes. Infection, Genetics and Evolution 16, 122–112.CrossRefGoogle ScholarPubMed
Fyodorova, MV, Savage, HM, Lopatina, JV, Bulgakova, TA, Ivanitsky, AV, Platonova, OV and Platonov, AE (2006) Evaluation of potential West Nile Virus vectors in Volgograd region, Russia, 2003 (Diptera: Culicidae): species composition, bloodmeal host utilization, and virus infection rates of mosquitoes. Journal of Medical Entomology 43, 552556.CrossRefGoogle ScholarPubMed
Gardner, CL and Ryman, KD (2010) Yellow fever: a reemerging threat. Clinics in Laboratory Medicine 30, 237–226.CrossRefGoogle ScholarPubMed
Githeko, AK, Service, MW, Mbogo, CM, Atieli, FK and Juma, FO (1994) Origin of blood meals in indoor and outdoor resting malaria vectors in Western Kenya. Acta Tropica 58, 307331.CrossRefGoogle ScholarPubMed
Gould, E, Pettersson, J, Higgs, S, Charrel, R and de Lamballerie, X (2017) Emerging arboviruses: why today? One Health (Amsterdam, Netherlands) 4, 113.Google ScholarPubMed
Halada, P, Hlavackova, K, Risueno, J, Berriatua, E, Volf, P and Dvorak, V (2018) Effect of trapping method on species identification of phlebotomine sandflies by MALDI-TOF MS protein profiling. Medical and Veterinary Entomology 32, 388392.CrossRefGoogle ScholarPubMed
Kent, RJ (2009) Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Molecular Ecology Ressources 9, 418.CrossRefGoogle ScholarPubMed
Kent, RJ and Norris, DE (2005) Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. American Journal of Tropical Medicine and Hygiene 73, 336–334.CrossRefGoogle ScholarPubMed
Laroche, M, Almeras, L, Pecchi, E, Bechah, Y, Raoult, D, Viola, A and Parola, P (2017a) MALDI-TOF MS as an innovative tool for detection of Plasmodium parasites in Anopheles mosquitoes. Malaria Journal 16, 5.CrossRefGoogle Scholar
Laroche, M, Berenger, JM, Gazelle, G, Blanchet, D, Raoult, D and Parola, P (2017b) MALDI-TOF MS protein profiling for the rapid identification of Chagas disease triatomine vectors and application to the triatomine fauna of French Guiana. Parasitology 145, 111.Google Scholar
Lawrence, AL, Batovska, J, Webb, CE, Lynch, SE, Blacket, MJ, Šlapeta, J, Parola, P and Laroche, M (2019) Accurate identification of Australian mosquitoes using protein profiling. Parasitology 146, 462471.CrossRefGoogle ScholarPubMed
Linthicum, KJ, Britch, SC and Anyamba, A (2016) Rift valley fever: an emerging mosquito-borne disease. Annual Reviews of Entomology 61, 395415.CrossRefGoogle Scholar
Logue, K, Keven, JB, Cannon, MV, Reimer, L, Siba, P, Walker, ED, Zimmerman, PA and Serre, D (2016) Unbiased characterization of Anopheles mosquito blood meals by targeted high-throughput sequencing. PLoS Neglected Tropical Diseases 10, e00045.CrossRefGoogle ScholarPubMed
Maleki-Ravasan, N, Oshaghi, M, Javadian, E, Rassi, Y, Sadraei, J and Mohtarami, F (2009) Blood meal identification in field-captured sand flies: comparison of PCR-RFLP and ELISA assays. Iran Journal ofArthropod Borne Diseases 3, 818.Google ScholarPubMed
Mewara, A, Sharma, M, Kaura, T, Zaman, K, Yadav, R and Sehgal, R (2018) Rapid identification of medically important mosquitoes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Parasites & Vectors 11, 281.CrossRefGoogle ScholarPubMed
Moreno, M, Saavedra, MP, Bickersmith, SA, Prussing, C, Michalski, A, Tong, RC, Vinetz, JM and Conn, JE (2017) Intensive trapping of blood-fed Anopheles Darlingi in Amazonian Peru reveals unexpectedly high proportions of avian blood-meals. PLoS Neglected Tropical Diseases 11, e00053.CrossRefGoogle ScholarPubMed
Mucci, LF, Júnior, RP, de Paula, MB, Scandar, SA, Pacchioni, ML, Fernandes, A and Consales, CA (2015) Feeding habits of mosquitoes (Diptera: Culicidae) in an area of sylvatic transmission of yellow fever in the state of São Paulo. Brazil. Journal of Venomous Animals and Toxins including Tropical Diseases 21, 6.CrossRefGoogle Scholar
Munnoz, J, Eritja, R, Alcaide, M, Montalvo, T, Soriguer, RC and Figuerola, J (2011) Host-feeding patterns of native Culex Pipiens and invasive Aedes albopictus mosquitoes (Diptera: Culicidae) in urban zones from Barcelona, Spain. Journal of Medical Entomology 48, 956996.CrossRefGoogle ScholarPubMed
Muriu, SM, Muturi, EJ, Shililu, JI, Mbogo, CM, Mwangangi, JM, Jacob, BG, Irungu, LW, Mukabana, RW, Githure, JI and Novak, RJ (2008) Host choice and multiple blood feeding behaviour of malaria vectors and other anophelines in Mwea rice scheme, Kenya. Malaria Journal 29, 43.CrossRefGoogle Scholar
Muturi, EJ, Muriu, S, Shililu, J, Mwangangi, JM, Jacob, BG, Mbogo, C, Githure, J and Novak, RJ (2008) Blood-feeding patterns of Culex Quinquefasciatus and other culicines and implications for disease transmission in Mwea rice scheme, Kenya. Parasitology Research 102, 13291335.CrossRefGoogle ScholarPubMed
Ndenga, BA, Mulaya, NL, Musaki, SK, Shiroko, JN, Dongus, S and Fillinger, U (2016) Malaria vectors and their blood-meal sources in an area of high bed net ownership in the Western Kenya highlands. Malaria Journal 15, 76.CrossRefGoogle Scholar
Nebbak, A, Willcox, AC, Bitam, I, Raoult, D, Parola, P and Almeras, L (2016) Standardization of sample homogenization for mosquito identification using an innovative proteomic tool based. Proteomics 16, 31483160.CrossRefGoogle ScholarPubMed
Ngom el, HM, Ndione, JA, Ba, Y, Konaté, L, Faye, O, Diallo, M and Dia, I (2013) Spatio-temporal analysis of host preferences and feeding patterns of malaria vectors in the sylvo-pastoral area of Senegal: impact of landscape classes. Parasites & Vectors 6, 332.CrossRefGoogle ScholarPubMed
Niare, S, Berenger, JM, Dieme, C, Doumbo, O, Raoult, D, Parola, P and Almeras, L (2016) Identification of blood meal sources in the main African Malaria mosquito vector by MALDI TOF MS. Malaria Journal 15, 87.CrossRefGoogle ScholarPubMed
Niare, S, Almeras, L, Tandina, F, Yssouf, A, Bacar, A, Toilibou, A, Doumbo, O, Raoult, D and Parola, P (2017a) MALDI-TOF MS identification of Anopheles Gambiae Giles blood meal crushed on Whatman filter papers’. PLoS ONE 12, e0183238.CrossRefGoogle Scholar
Niare, S, Tandina, F, Davoust, B, Doumbo, O, Raoult, D, Parola, P and Almeras, L (2017b) Accurate identification of Anopheles Gambiae Giles trophic preferences by MALDI-TOF MS. Infection, Genetics and Evolution 63, 410419.CrossRefGoogle Scholar
Nossel, HL and Niemetz, J (1965) A normal inhibitor of the blood coagulation contact reaction product. Blood 25, 712772.CrossRefGoogle ScholarPubMed
Onder, O, Shao, W, Kemps, BD, Lam, H and Brisson, D (2013) Identifying sources of tick blood meals using unidentified tandem mass spectral libraries. Nature Communication 4, 1746.CrossRefGoogle ScholarPubMed
Oshaghi, MA, Chavshin, AR, Vatandoost, H, Yaaghoobi, F, Mohtarami, F and Noorjah, N (2006) Effects of post-ingestion and physical conditions on PCR amplification of host blood meal DNA in mosquitoes. Experimental Parasitology 112, 232232.CrossRefGoogle ScholarPubMed
Petersen, JM, Mead, PS and Schriefer, ME (2009) Francisella tularensis: an arthropod-borne pathogen. Veterinary Research 40, 7.CrossRefGoogle Scholar
Prior, A and Torr, SJ (2002) Host selection by Anopheles arabiensis and Anopheles quadriannulatus feeding on cattle in Zimbabwe. Medical and Veterinary Entomology 16, 207221.CrossRefGoogle ScholarPubMed
Raharimalala, FN, Andrianinarivomanana, TM, Rakotondrasoa, A, Collard, JM and Boyer, S (2017) Usefulness and accuracy of MALDI-TOF mass spectrometry as a supplementary tool to identify mosquito vector species and to invest in development of international database. Medical and Veterinary Entomology 31, 289298.CrossRefGoogle ScholarPubMed
Rothen, J, Githaka, N, Kanduma, EG, Olds, C, Pflüger, V, Mwaura, S, Bishop, RP and Daubenberger, C (2016) Matrix-assisted laser desorption/ionization time of flight mass spectrometry for comprehensive indexing of East African ixodid tick species. Parasites & Vectors 9, 1.CrossRefGoogle ScholarPubMed
Sambou, M, Aubadie-Ladrix, M, Fenollar, F, Fall, B, Bassene, H, Almeras, L, Sambe-Ba, B, Perrot, N, Chatellier, S, Faye, N, Parola, P, Wade, B, Raoult, D and Mediannikov, O (2015) Comparison of matrix-assisted laser desorption ionization–time of flight mass spectrometry and molecular biology techniques for identification of culicoides (Diptera: Ceratopogonidae) biting midges in Senegal. Journal of Clinical Microbiology 53, 410418.CrossRefGoogle ScholarPubMed
Schubert, S and Kostrzewa, M (2017) MALDI-TOF MS in the microbiology laboratory: current trends. Current Issues in Molecular Biology 23, 1720.CrossRefGoogle ScholarPubMed
Seng, P, Drancourt, M, Gouriet, F, La, SB, Fournier, PE, Rolain, JM and Raoult, D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clinical Infectious Diseases 49, 543555.CrossRefGoogle ScholarPubMed
Seng, P, Rolain, JM, Fournier, PE, La, SB, Drancourt, M and Raoult, D (2010) MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiology 5, 1733–1717.CrossRefGoogle ScholarPubMed
Seng, P, Abat, C, Rolain, JM, Colson, P, Lagier, JC, Gouriet, F, Fournier, PE, Drancourt, M, La, SB and Raoult, D (2013) Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology 51, 21822182.CrossRefGoogle Scholar
Shililu, JI, Maier, WA, Seitz, HM and Orago, AS (1998) Seasonal density, sporozoite rates and entomological inoculation rates of Anopheles Gambiae and Anopheles funestus in a high-altitude sugarcane growing zone in Western Kenya. Tropical Medicine and International Health 3, 706710.CrossRefGoogle Scholar
Tandina, F, Almeras, L, Koné, AK, Doumbo, OK, Raoult, D and Parola, P (2016) Use of MALDI-TOF MS and culturomics to identify mosquitoes and their midgut microbiota. Parasites & Vectors 9, 495.CrossRefGoogle ScholarPubMed
Tandina, F, Laroche, M, Davoust, B, Doumbo O, K and Parola, P (2018a) Blood meal identification in the cryptic species Anopheles Gambiae and Anopheles coluzzii using MALDI-TOF MS. Parasite 25, 40.CrossRefGoogle Scholar
Tandina, F, Niaré, S, Laroche, M, Koné, AK, Diarra, AZ, Ongoiba, A, Berenger, JM, Doumbo, OK, Raoult, D and Parola, P (2018b) Using MALDI-TOF MS to identify mosquitoes collected in Mali and their blood meals. Parasitology 145, 11701182.CrossRefGoogle Scholar
Thomas, S, Ravishankaran, S, Justin, NA, Asokan, A, Mathai, MT, Valecha, N, Montgomery, J, Thomas, MB and Eapen, A (2017) Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malaria Journal 16, 111.CrossRefGoogle Scholar
Unver, A, Perez, M, Orellana, N, Huang, H and Rikihisa, Y (2001) Molecular and antigenic comparison of Ehrlichia canis isolates from dogs, ticks, and a human in Venezuela. Journal of Clinical Microbiology 39, 27882793.CrossRefGoogle Scholar
Vasilakis, N, Cardosa, J, Hanley, KA, Holmes, EC and Weaver, SC (2011) Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nature Reviews Microbiology 9, 532541.CrossRefGoogle ScholarPubMed
WHO (2016) World Malaria Report 2016. Geneva: World Health Organization.Google Scholar
Yssouf, A, Socolovschi, C, Flaudrops, C, Ndiath, MO, Sougoufara, S, Dehecq, JS, Lacour, G, Berenger, JM, Sokhna, CS, Raoult, D and Parola, P (2013) Matrix-assisted laser desorption ionization-time of flight mass spectrometry: an emerging tool for the rapid identification of mosquito vectors. PLoS ONE 8, e72380.CrossRefGoogle ScholarPubMed
Yssouf, A, Almeras, L, Raoult, D and Parola, P (2016) Emerging tools for identification of arthropod vectors. Future Microbiology 11, 549566.CrossRefGoogle ScholarPubMed
Zhang, L, Smart, S and Sandrin, TR (2015) Biomarker- and similarity coefficient-based approaches to bacterial mixture characterization using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Science Reports 5, 15834.CrossRefGoogle Scholar
Supplementary material: Image

Tandina et al. supplementary material

Figure S1

Download Tandina et al. supplementary material(Image)
Image 54.3 MB
Supplementary material: File

Tandina et al. supplementary material

Tables S1-S2

Download Tandina et al. supplementary material(File)
File 14.4 KB