Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T15:00:21.708Z Has data issue: false hasContentIssue false

Identification of levamisole resistance markers in the parasitic nematode Haemonchus contortus using a cDNA-AFLP approach

Published online by Cambridge University Press:  03 July 2007

C. NEVEU*
Affiliation:
INRA, IASP, 213, UR 1282, F-37380 Nouzilly, France.
C. CHARVET
Affiliation:
INRA, IASP, 213, UR 1282, F-37380 Nouzilly, France.
A. FAUVIN
Affiliation:
INRA, IASP, 213, UR 1282, F-37380 Nouzilly, France.
J. CORTET
Affiliation:
INRA, IASP, 213, UR 1282, F-37380 Nouzilly, France.
P. CASTAGNONE-SERENO
Affiliation:
INRA, UMR1064 Interactions Plantes-Microorganismes et Santé Végétale, 400 route des Chappes, BP167, 06903 Sophia Antipolis, France.
J. CABARET
Affiliation:
INRA, IASP, 213, UR 1282, F-37380 Nouzilly, France.
*
*Corresponding author: INRA, IASP, 213, UR 1282, F-37380 Nouzilly, France. Tel: +33 (0)2 47427768. Fax: +33 (0) 2 47427774. E-mail: [email protected]

Summary

A cDNA-AFLP (cDNA-Amplified Fragment Length Polymorphism)-based strategy has been used to identify levamisole (LEV) resistance markers in the nematode Haemonchus contortus. Transcript profiles of adult nematodes from two LEV-resistant and two susceptible isolates were compared. Among the 17 280 transcript-derived fragments (TDFs) amplified, 26 presented a polymorphic pattern between resistant and susceptible nematodes: 11 TDFs were present in both resistant isolates and absent from both susceptible isolates whereas 15 TDFs were present in both susceptible isolates and absent from both resistant isolates. 8 TDFs specifically present in resistant isolates were cloned and sequenced. Some of these TDFs could represent novel genes, as their sequences presented no homologies in databases. Interestingly, specific expression of one candidate (HA17) in resistant nematodes from different isolates was confirmed by RT-PCR experiments. The finding that HA17 expression correlates with LEV resistance in three H. contortus isolates vs five susceptible isolates strongly suggest that we identified a new potential marker of LEV resistance. This differential approach at the transcriptome level could be of great interest for the identification of the molecular mechanism involved in this phenotype.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. H., Zhang, Z., Miller, W. and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 33893402.CrossRefGoogle ScholarPubMed
Bachem, C. W. B., van der Hoeven, R. S., de Bruijn, S. M., Vreugdenhil, D., Zabeau, M. and Visser, R. G. (1996). Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. The Plant Journal 9, 745753.CrossRefGoogle ScholarPubMed
Coles, G. C., East, J. M. and Jenkins, S. N. (1975). The mechanism of action of the anthelmintic levamisole. General Pharmacology 6, 309313.CrossRefGoogle Scholar
Culetto, E., Baylis, H. A., Richmond, J. E., Jones, A. K., Fleming, J. T., Squire, M. D., Lewis, J. A. and Sattelle, D. B. (2004). The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor alpha subunit. Journal of Biochemical Chemistry 279, 4247642483.Google ScholarPubMed
Fleming, J. T., Squire, M. D., Barnes, T. M., Tornoe, C., Matsuda, K., Ahnn, J., Fire, A., Sulston, J. E., Barnard, E. A., Sattelle, D. B. and Lewis, J. A. (1997). Caenorhabditis elegans levamisole resistance genes lev-1, unc-29 and unc-38 encode functional nicotinic acetylcholine receptor subunits. Journal of Neuroscience 17, 58435857.CrossRefGoogle ScholarPubMed
Geldhof, P., Murray, L., Couthier, A., Gilleard, J. S., McLauchlan, G., Knox, D. P. and Britton, C. (2006). Testing the efficacy of RNA interference in Haemonchus contortus. International Journal for Parasitology 36, 801810.CrossRefGoogle ScholarPubMed
Hoekstra, R., Borgsteede, F. H. M., Boersema, J. H. and Roos, M. H. (1997 b). Selection for high levamisole resistance in Haemonchus contortus monitored with an egg-hatch assay. International Journal for Parasitology 27, 13951400.Google Scholar
Hoekstra, R., Visser, A., Wiley, L. J., Weiss, A. S., Sangster, N. C. and Roos, M. H. (1997 a). Characterization of an acetylcholine receptor gene of Haemonchus contortus in relation to levamisole resistance. Molecular and Biochemical Parasitology 84, 179187.CrossRefGoogle ScholarPubMed
Jones, A. K. and Sattelle, D. B. (2004). Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans. Bioessays 26, 3949.CrossRefGoogle ScholarPubMed
Kotze, A. C. and Bagnall, N. H. (2006). RNA interference in Haemonchus contortus: suppression of beta-tubulin gene expression in L3, L4 and adult worms in vitro. Molecular and Biochemical Parasitology 145, 101110.CrossRefGoogle ScholarPubMed
Lewis, J. A., Wu, C. H., Levine, J. H. and Berg, H. (1980). Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neurosciences 5, 967989.CrossRefGoogle ScholarPubMed
Martin, R. J., Verma, S., Levandosky, M., Clark, C. L., Qian, H., Stewart, M. and Robertson, A. P. (2005). Drug resistance and neurotransmitter receptors of nematodes: recent studies on the mode of action of levamisole. Parasitology 131, S71S84.CrossRefGoogle ScholarPubMed
Neveu, C., Jaubert, S., Abad, P. and Castagnone-Sereno, P. (2003). A set of genes differentially expressed between avirulent and virulent Meloidogyne incognita near-isogenic lines encode secreted proteins. Molecular Plant Microbe Interactions 16, 10771084.CrossRefGoogle ScholarPubMed
Qin, L., Overmars, H., Helder, J., Popeijus, H., Rouppe Van der Voort, J., Groenink, W., Van Koert, P., Schots, A., Bakker, J. and Smant, G. (2000). An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globodera rostochiensis. Molecular Plant Microbe Interactions 13, 830836.CrossRefGoogle ScholarPubMed
Robertson, A. P., Bjorn, H. E. and Martin, R. J. (1999). Resistance to levamisole resolved at the single-channel level. FASEB Journal 13, 749760.CrossRefGoogle ScholarPubMed
Sangster, N. C., Davis, C. W. and Collins, G. H. (1991). Effects of cholinergic drugs on longitudinal contraction in levamisole-susceptible and levamisole-resistant Haemonchus contortus. International Journal for Parasitology 21, 689695.CrossRefGoogle Scholar
Sangster, N. C., Riley, F. L. and Collins, G. H. (1988). Investigation of the mechanism of levamisole resistance in trichostrongylid nematodes of sheep. International Journal for Parasitology 18, 813818.CrossRefGoogle ScholarPubMed
Sangster, N. C., Riley, F. L. and Wiley, L. J. (1998). Binding of [3H]m-aminolevamisole to receptor in levamisole-susceptible and -resistant Haemonchus contortus. International Journal for Parasitology 28, 707717.CrossRefGoogle ScholarPubMed
Sangster, N. C., Song, J. and Demeler, J. (2005). Resistance as a tool for discovering and understanding targets in parasite neuromusculature. Parasitology 131, S179S190.CrossRefGoogle ScholarPubMed
Semblat, J. P., Bongiovanni, M., Wajnberg, E., Dalmasso, A., Abad, P. and Castagnone-Sereno, P. (2000). Virulence and molecular diversity of parthenogenetic root-knot nematodes, Meloidogyne spp. Heredity 84, 8189.CrossRefGoogle ScholarPubMed
Silvestre, A., Chartier, C., Sauvé, C. and Cabaret, J. (2000). Relationship between helminth species diversity, intensity of infection and breeding management in dairy goats. Veterinary Parasitology 94, 91105.Google Scholar
Towers, P. R., Edwards, B., Richmond, J. E. and Sattelle, D. B. (2005). The Caenorhabditis elegans unc-63 gene encodes a novel type of nicotinic acetylcholine receptor α subunit. Journal of Neurochemistry 93, 19.CrossRefGoogle Scholar