Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T17:17:59.620Z Has data issue: false hasContentIssue false

Identification of high-risk regions for schistosomiasis in the Guichi region of China: an adaptive kernel density estimation-based approach

Published online by Cambridge University Press:  07 March 2013

ZHI-JIE ZHANG*
Affiliation:
Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, People's Republic of China Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, People's Republic of China Laboratory for Spatial Analysis and Modelling, School of Public Health, Fudan University, Shanghai 200032, People's Republic of China
TILMAN M. DAVIES
Affiliation:
Department of Statistics, Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
JIE GAO
Affiliation:
Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, People's Republic of China Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, People's Republic of China Laboratory for Spatial Analysis and Modelling, School of Public Health, Fudan University, Shanghai 200032, People's Republic of China
ZENGLIANG WANG
Affiliation:
Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, People's Republic of China Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, People's Republic of China Laboratory for Spatial Analysis and Modelling, School of Public Health, Fudan University, Shanghai 200032, People's Republic of China
QING-WU JIANG
Affiliation:
Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, People's Republic of China Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, People's Republic of China
*
*Corresponding author: Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, People's Republic of China. Tel: +86 21 54237410. Fax: +86 21 54237410. E-mail: [email protected]

Summary

Identification of high-risk regions of schistosomiasis is important for rational resource allocation and effective control strategies. We conducted the first study to apply the newly developed method of adaptive kernel density estimation (KDE)-based spatial relative risk function (sRRF) to detect the high-risk regions of schistosomiasis in the Guichi region of China and compared it with the fixed KDE-based sRRF. We found that the adaptive KDE-based sRRF had a better ability to depict the heterogeneity of risk regions, but was more sensitive to altering the user-defined smoothing parameters. Specifically, the impact of bandwidths on the estimated risk value and risk significance (P value) was higher for the adaptive KDE-based sRRF, but lower on the estimated risk variation standard error (s.e.) compared with the fixed KDE-based sRRF. Based on this application the adaptive and fixed KDE-based sRRF have their respective advantages and disadvantages and the joint application of the two approaches can warrant the best possible identification of high-risk subregions of diseases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramson, I. S. (1982). On bandwidth estimation in kernel estimates – a square root law. Annals of Statistics 10, 12171223.CrossRefGoogle Scholar
Benschop, J., Hazelton, M. L., Stevenson, M. A., Dahl, J., Morris, R. S. and French, N. P. (2008). Descriptive spatial epidemiology of subclinical Salmonella infection in finisher pig herds: application of a novel method of spatially adaptive smoothing. Veterinary Research 39, 2.CrossRefGoogle ScholarPubMed
Berke, O. and Grosse Beilage, E. (2003). Spatial relative risk mapping of pseudorabies-seropositive pig herds in an animal-dense region. Journal of Veterinary Medicine Series B – Infectious Diseases and Veterinary Public Health 50, 322325.CrossRefGoogle Scholar
Bithell, J. F. (1990). An application of density estimation to geographical epidemiology. Statistics in Medicine 9, 691701.CrossRefGoogle ScholarPubMed
Bithell, J. F. (1991). Estimation of relative risk functions. Statistics in Medicine 10, 17451751.CrossRefGoogle ScholarPubMed
Bowman, A. and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis-The Kernel Approach with S-Plus Illustrations. Oxford: Oxford University Press.CrossRefGoogle Scholar
Brooker, S., Leslie, T., Kolaczinski, K., Mohsen, E., Mehboob, N., Saleheen, S., Khudonazarov, J., Freeman, T., Clements, A., Rowland, M. and Kolaczinski, J. (2006). Spatial epidemiology of Plasmodium vivax, Afghanistan. Emerging Infectious Diseases 12, 16001602.CrossRefGoogle ScholarPubMed
Davies, T. M. and Hazelton, M. L. (2010). Adaptive kernel estimation of spatial relative risk. Statistics in Medicine 29, 24232437.CrossRefGoogle ScholarPubMed
Davies, T. M., Hazelton, M. L. and Marshall, J. C. (2011). Sparr: analyzing spatial relative risk using fixed and adaptive kernel density estimation in R. Journal of Statistical Software 39, 114.CrossRefGoogle Scholar
Diggle, P. (1985). A kernel-method for smoothing point process data. Applied Statistics – Journal of the Royal Statistical Society Series C 34, 138147.Google Scholar
Galvao, A. F., Favre, T. C., Guimaraes, R. J., Pereira, A. P., Zani, L. C., Felipe, K. T., Domingues, A. L., Carvalho, O. S., Barbosa, C. S. and Pieri, O. S. (2010). Spatial distribution of Schistosoma mansoni infection before and after chemotherapy with two praziquantel doses in a community of Pernambuco, Brazil. Memórias do Instituto Oswaldo Cruz 105, 555562.CrossRefGoogle Scholar
Hazelton, M. L. and Davies, T. M. (2009). Inference based on kernel estimates of the relative risk function in geographical epidemiology. Biometrical Journal 51, 98109.CrossRefGoogle ScholarPubMed
Kelsall, J. E. and Diggle, P. J. (1995 a). Kernel estimation of relative risk. Bernoulli 1, 316.CrossRefGoogle Scholar
Kelsall, J. E. and Diggle, P. J. (1995 b). Non-parametric estimation of spatial variation in relative risk. Statistics in Medicine 14, 23352342.CrossRefGoogle ScholarPubMed
Kelsall, J. E. and Diggle, P. J. (1998). Spatial variation in risk of disease: a nonparametric binary regression approach. Applied Statistics 47, 559573.Google Scholar
Marshall, J. C. and Hazelton, M. L. (2010). Boundary kernels for adaptive density estimators on regions with irregular boundaries. Journal of Multivariate Analysis 101, 949963.CrossRefGoogle Scholar
Peng, W. X., Tao, B., Clements, A., Jiang, Q. L., Zhang, Z. J., Zhou, Y. B. and Jiang, Q. W. (2010). Identifying high-risk areas of schistosomiasis and associated risk factors in the Poyang Lake region, China. Parasitology 137, 10991107.CrossRefGoogle ScholarPubMed
Prince, M. I., Chetwynd, A., Diggle, P., Jarner, M., Metcalf, J. V. and James, O. F. (2001). The geographical distribution of primary biliary cirrhosis in a well-defined cohort. Hepatology 34, 10831088.CrossRefGoogle Scholar
Sabel, C. E., Gatrell, A. C., Loytonen, M., Maasilta, P. and Jokelainen, M. (2000). Modelling exposure opportunities: estimating relative risk for motor neurone disease in Finland. Social Science and Medicine, 50, 11211137.CrossRefGoogle ScholarPubMed
Terrell, G. R. (1990). The maximal smoothing principle in density-estimation. Journal of the American Statistical Association 85, 470477.CrossRefGoogle Scholar
Utzinger, J., Bergquist, R., Shu-Hua, X., Singer, B. H. and Tanner, M. (2003). Sustainable schistosomiasis control – the way forward. Lancet 362, 19321934.CrossRefGoogle ScholarPubMed
Utzinger, J., Raso, G., Brooker, S., De Savigny, D., Tanner, M., Ornbjerg, N., Singer, B. H. and N'Goran, E. K. (2009). Schistosomiasis and neglected tropical diseases: towards integrated and sustainable control and a word of caution. Parasitology 136, 18591874.CrossRefGoogle Scholar
Vieira, V., Webster, T., Aschengrau, A. and Ozonoff, D. (2002). A method for spatial analysis of risk in a population-based case-control study. International Journal of Hygiene and Environmental Health 205, 115120.CrossRefGoogle Scholar
Ward, M. P. and Carpenter, T. E. (2000). Techniques for analysis of disease clustering in space and in time in veterinary epidemiology. Preventive Veterinary Medicine 45, 257284.CrossRefGoogle ScholarPubMed
Wheeler, D. C. (2007). A comparison of spatial clustering and cluster detection techniques for childhood leukemia incidence in Ohio, 1996–2003. International Journal of Health Geographics 6, 13.CrossRefGoogle ScholarPubMed
Zhang, Z., Carpenter, T. E., Chen, Y., Clark, A. B., Lynn, H. S., Peng, W., Zhou, Y., Zhao, G. and Jiang, Q. (2008). Identifying high-risk regions for schistosomiasis in Guichi, China: a spatial analysis. Acta Tropica 107, 217223.CrossRefGoogle Scholar
Zhang, Z., Clark, A. B., Bivand, R., Chen, Y., Carpenter, T. E., Peng, W., Zhou, Y., Zhao, G. and Jiang, Q. (2009 a). Nonparametric spatial analysis to detect high-risk regions for schistosomiasis in Guichi, China. Transactions of the Royal Society of Tropical Medicine and Hygiene 103, 10451052.CrossRefGoogle ScholarPubMed
Zhang, Z. J., Carpenter, T. E., Lynn, H. S., Chen, Y., Bivand, R., Clark, A. B., Hui, F. M., Peng, W. X., Zhou, Y. B., Zhao, G. M. and Jiang, Q. W. (2009 b). Location of active transmission sites of Schistosoma japonicum in lake and marshland regions in China. Parasitology 136, 737746.CrossRefGoogle ScholarPubMed
Zhou, X. N., Guo, J. G., Wu, X. H., Jiang, Q. W., Zheng, J., Dang, H., Wang, X. H., Xu, J., Zhu, H. Q., Wu, G. L., Li, Y. S., Xu, X. J., Chen, H. G., Wang, T. P., Zhu, Y. C., Qiu, D. C., Dong, X. Q., Zhao, G. M., Zhang, S. J., Zhao, N. Q., Xia, G., Wang, L. Y., Zhang, S. Q., Lin, D. D., Chen, M. G. and Hao, Y. (2007). Epidemiology of schistosomiasis in the People's Republic of China, 2004. Emerging Infectious Diseases 13, 14701476.CrossRefGoogle ScholarPubMed
Zhou, X. N., Bergquist, R., Leonardo, L., Yang, G. J., Yang, K., Sudomo, M. and Olveda, R. (2010). Schistosomiasis japonica control and research needs. Advances in Parasitology 72, 145178.CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhang Supplementary Material

Appendix

Download Zhang Supplementary Material(File)
File 11.8 MB