Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T00:27:53.282Z Has data issue: false hasContentIssue false

Identification and isolation of Trypanosoma cruzi trypomastigote collagen-binding proteins: possible role in cell-parasite interaction

Published online by Cambridge University Press:  06 April 2009

P. Velge
Affiliation:
Centre d'Immunologie et de Biologie Parasitaire, Unité Mixte INSERM U 167-CNRS 624, Institut Pasteur, 1, rue du Professeur A. Calmette, 59019-Lille Cédex, France
M. A. Ouaissi*
Affiliation:
Centre d'Immunologie et de Biologie Parasitaire, Unité Mixte INSERM U 167-CNRS 624, Institut Pasteur, 1, rue du Professeur A. Calmette, 59019-Lille Cédex, France
J. Cornette
Affiliation:
Centre d'Immunologie et de Biologie Parasitaire, Unité Mixte INSERM U 167-CNRS 624, Institut Pasteur, 1, rue du Professeur A. Calmette, 59019-Lille Cédex, France
D. Afchain
Affiliation:
Centre d'Immunologie et de Biologie Parasitaire, Unité Mixte INSERM U 167-CNRS 624, Institut Pasteur, 1, rue du Professeur A. Calmette, 59019-Lille Cédex, France
A. Capron
Affiliation:
Centre d'Immunologie et de Biologie Parasitaire, Unité Mixte INSERM U 167-CNRS 624, Institut Pasteur, 1, rue du Professeur A. Calmette, 59019-Lille Cédex, France
*
*Reprint requests to Dr M. A. Ouaissi.

Summary

We have shown here that collagen type I bound efficiently to the trypomastigote surface. In addition, monoclonal and polyclonal antibodies against collagen types I and III inhibited the infection of fibroblasts by the parasite. These results suggested the presence of collagen-binding protein(s) on the parasite surface. This protein was identified from trypomastigote surface antigens using affinity chromatography on a Gelatin Ultrogel column (denatured form of collagen). These collagen-binding proteins were revealed as a low-affinity gelatin binding protein (LAG Bp) of 98 kDa, and a high-affinity binding protein (HAG Bp) of 58 and 68 kDa under non-reducing and reducing conditions respectively. In addition, HAG Bp and LAG Bp bound to collagen type I. The 58/68 kDa protein was purified to homogeneity on a wheat germ agglutinin Sepharose column. A polyclonal antibody to this glycoprotein, as well as a monoclonal antibody (McAb) 155D3 produced against the HAG Bp, immunoprecipitated two parasite surface antigens of 160 and 58 kDa under non-reducing conditions which migrated at a position of 80–85 and 68 kDa when reduced. However, only the 80–85 kDa component could be precipitated from [S] methionine-labelled trypomastigote antigens under reducing conditions. The antibodies to the 58/68 kDa glycoprotein as well as McAb 155D3 diminished the invasion of fibroblasts by parasites. Taken together these results suggest that the same receptor binds fibronectin and/or collagen and that both the 80–85 and 58/68 kDa glycoproteins form part of the same receptor. These trypomastigote surface molecules may interact with the host cell fibronectin and/or collagen during the initial phase of parasite-cell recognition.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamson, E. D. (1983). The effect of collagen on cell division, cellular differentiation and embryonic development. In Collagen in Health and Disease (ed. Jayson, M. and Weiss, J.), pp. 218–43. London: Churchill-Livingston.Google Scholar
Bannister, L. H., Butcher, G. A. & Mitchell, G. H. (1977). Recent advances in understanding the invasion of erythrocytes by merozoites of Plasmodium knowlesi. Bulletin of the World Health Organization 55, 163–9.Google ScholarPubMed
Bongertz, V. & Dvorak, J. A. (1983). Trypanosoma cruzi: Antigenic analysis of cloned stocks. American Journal of Tropical Medicine and Hygiene 32, 716–22.CrossRefGoogle ScholarPubMed
Bornstein, P. & Sage, H. (1980). Structurally distinct collagen types. Annual Review of Biochemistry 49, 9571003.CrossRefGoogle ScholarPubMed
Camargo, E. P., Barbieri, C. L. & Sanbevicius, J. V. (1982). Possible artefacts in the radioiodination of surface proteins of trypanosomatids. Journal of Immunological Methods 52, 245–53.CrossRefGoogle ScholarPubMed
Dedhar, S., Ruoslahti, E. & Pierschbacher, M. D. (1987). A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence. Journal of Cell Biology 104, 585–93.CrossRefGoogle ScholarPubMed
Gay, S. & Miller, E. J. (1978). Collagen in the Physiology and Pathology of Connective Tissue. Stuttgart: Gustav Fischer.Google Scholar
Goldenberg, S., Contreras, V. T., Salles, J. M., Franco, M. P. A. L., Bonaldo, M. C., Valle, D., Goncalves, A. M. & Morel, C. L. (1983). Perspectives for vaccinations against Chagas' disease through biotechnology. II. Genes expression in Trypanosoma cruzi trypomastigotes and cell free translation of a mRNAs coding for relevant surface antigens. New Approaches to Vaccine Development, Proceedings of a W.H.O. meeting, Geneva, pp. 442–9.Google Scholar
Henriquez, D., Piras, R. & Piras, M. M. (1981). The effect of surface membrane modifications of fibroblastic cells and the entry process of Trypanosoma cruzi trypomastigotes. Molecular and Biochemical Parasitology 2, 359–66.CrossRefGoogle ScholarPubMed
Katzin, A. M. & Colli, W. (1983). Lectin receptors in Trypanosoma cruzi: an N-acetyl, D glucosamine containing surface glycoprotein specific for the trypomastigote stage. Biochimica et Biophysica Acta 727, 403–11.CrossRefGoogle ScholarPubMed
KÖhler, G. & Milstein, C. (1975). Continuous culture fused cells secreting antibody of predefined specificity. Nature, London 26, 495–7.CrossRefGoogle Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
McConahey, P. J. & Dixon, F. J. (1966). A method for trace iodination of proteins for immunology studies. International Archives of Allergy and Applied Immunology 29, 185–7.CrossRefGoogle Scholar
Miles, M. A., Toye, P. J., Oswald, S. C. & Godfrey, D. G. (1977). The identification by isoenzyme pattern of two distinct strain groups of Trypanosoma cruzi, circulating independently in a rural area of Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene 71, 217–23.CrossRefGoogle Scholar
Montes, G. S. & Junqueira, L. C. V. (1982). Biology of collagen. Revue Canadienne de Biologie Expérimentale 41, 143–56.Google ScholarPubMed
Morrissey, J. H. (1981). Silver stain for protein in polyacrylamide gels: modified procedure with enhanced uniform sensitivity. Analytical Biochemistry 117, 307–11.CrossRefGoogle ScholarPubMed
Nussenzweig, V., Deane, L. M. & Kloetzel, H. (1963). Differences in antigenic constitution of strains of Trypanosoma cruzi. Experimental Parasitology 14, 221–4.CrossRefGoogle ScholarPubMed
Ouaissi, M. A., Afchain, D., Capron, A. & Grimaud, J. A. (1984). Fibronectin receptors on Trypanosoma cruzi trypomastigotes and their biological function. Nature, London 308, 380–2.CrossRefGoogle ScholarPubMed
Ouaissi, M. A., Cornette, J. & Capron, A. (1985). Trypanosoma cruzi: Modulation of parasite-cell interaction by plasma fibronectin. European Journal of Immunology 15, 1096–101.CrossRefGoogle ScholarPubMed
Ouaissi, M. A., Cornette, J., Afchain, D., Capron, A., Gras-Masse, H. & Tartar, A. (1986 a). Trypanosoma cruzi infection inhibited by peptides modeled from a fibronectin cell attachment domain. Science 234, 603–7.CrossRefGoogle ScholarPubMed
Ouaissi, M. A., Cornette, J. & Capron, A. (1986 b). Identification and isolation of Trypanosoma cruzi trypomastigote cell surface protein with properties expected of a fibronectin receptor. Molecular and Biochemical Parasitology 19, 201–11.CrossRefGoogle ScholarPubMed
Piras, R., Piras, M. M. & Henriquez, D. (1983). Trypanosoma cruzi-fibroblastic cell interactions necessary for cellular invasion. Cytopathology of Parasitic Disease, Ciba Foundation Symposium 99, 3141.CrossRefGoogle ScholarPubMed
Plata, F., Garcia-Pons, F. & Eisen, H. (1984). Antigenic polymorphism of Trypanosoma cruzi: clonal analysis of trypomastigote surface antigens. European Journal of Immunology 14, 392–9.CrossRefGoogle ScholarPubMed
Reddi, A. H. & Anderson, W. A. (1976). Collagenous bound matrix induced endochondrial ossification and hemopoiesis. Journal of Cellular Biology 69, 557–72.CrossRefGoogle Scholar
Ruoslahti, E. & Pierschbacher, M. D. (1987). New perspectives in cell adhesion: RGD and Integrins. Science 238, 491–7.CrossRefGoogle ScholarPubMed
Snary, D. (1985). Receptors and recognition mechanism of Trypanosoma cruzi. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 587–90.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 74, 4350–3.CrossRefGoogle Scholar
Voller, A., Bidwell, D. & Bartlett, A. (1976). Microplate enzyme immunoassays for the immunodiagnosis of virus infections. Manual of Clinical Immunology. American Society for Microbiology (ed. Rose, N. and Feldman, H.), pp. 506–12.Google Scholar
Wirth, J. J. & Kierszenbaum, F. (1984). Fibronectin enhances macrophage association with invasive forms of Trypanosoma cruzi. Journal of Immunology 133, 460–4.CrossRefGoogle ScholarPubMed
Zingales, B., Katzin, A. M., Arruda, M. V. & Colli, W. (1985). Correlation of tunicamycin sensitive surface glycoproteins from Trypanosoma cruzi with parasite interiorization into mammalian cells. Molecular and Biochemical Parasitology 16, 2134.CrossRefGoogle ScholarPubMed